C 2	20208 (Pages: 3)	Name					
		Reg. No					
SIX	IXTH SEMESTER (CUCBCSS-UG) DEGREE EX	AMINATION, MARCH 2022					
Mathematics							
MAT 6B 10—COMPLEX ANALYSIS							
	(2014 to 2018 Admissions)						
Time :	ne : Three Hours	Maximum : 120 Marks					
	Section A						
Answer all questions. Each question carries 1 mark.							
1.	1. A complex function $f(z)$ is analytic at a point $z = z_0$ if –						
2.	2. An analytic function with constant argument is ———	-					
3.	Give an example of a complex function which is Differentiable at a point but not analytic at that point.						
4.	4. Find the simple poles, if any for the function $f(z) = \frac{(z)}{z^5}$	$(x^4-1)^2$					
5.	5. Write the polar form of Cauchy-Riemann equations.						
6.	6. Define residue of a complex valued function.						
7.		-					
8.							
9.	9. A point $z = z_0$ is a singular point of a complex function $w = f(z)$ if ———.						
10.	0. Fill in the blanks : $\operatorname{Res}_{z=\pi/2} \tan z =$						
11.	1. The solution of the equation $e^z = -3$ is ———.						
12.	2. The principal value of i^i is ———.						
		$(12 \times 1 = 12 \text{ marks})$					
	Section B						
Answer any ten questions. Each question carries 4 marks.							
13.	3. Show that $f(z) = \sin z$ is analytic for all z .						
14.	4. Find the principal value of $(1-i)^{1+i}$.						
15.	5. Show that $\tanh^{-1}(z) = \frac{1}{2} \log \frac{1+z}{1-z}$.						

16. Show that the zeros of an analytic function are isolated.

Turn over

2 C 20208

- 17. Determine and classify the singular points of $f(z) = \frac{(z+2)^2}{z^5(z^4-1)}$.
- 18. Find the radius of convergence of the power series : $\sum_{n=0}^{\infty} \frac{n! z^n}{n^n}$.
- 19. Verify Cauchy-Groursat theorem for $f(z) = z^5$ when the contour of integration is the circle with centre at origin and radius 3 units.
- 20. Discuss the nature of singularities if any, of $f(z) = \sin(1/z)$ in the complex plane.
- 21. Find all the solution of $e^z = 2$.
- 22. Find the residue of $f(z) = \cot(z)$ at its poles.
- 23. Evaluate $\oint_C \frac{\sin \pi z}{(z^6)} dz$ around C = |z| = 1.
- 24. Find the Taylor series expansion of $f(z) = e^z$ around $z = i\pi/2$.
- 25. Evaluate $\oint_{|z|=2} \overline{z} dz$.
- 26. Illustrate entire function by an example.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** questions. Each question carries 7 marks.

- 27. Evaluate $\oint_C \frac{1}{(z-1)(z-2)}$ around the simple closed curve C = |z| = 4.
- 28. Determine the nature of the singularities of the function $f(z) = \sec(1/z)$.
- 29. Expand $f(z) = \frac{1}{(z+1)(z+2)}$ as a Laurent series valid for 0 < |z+1| < 2.
- 30. If f(z) = u(x, y + iv(x, y)) is analytic in a domain D, then prove that its component functions are harmonic in D.
- 31. Find the analytic function f(z) is terms of z, if $u(x, y) = \text{Re}(f(z)) = e^x(x \cos y y \sin y)$.
- 32. Show that the function $f(z) = \sqrt{xy}$ is not analytic at the origin, even though Cauchy Riemann equations are satisfied at that point.
- 33. State and prove Morera's theorem.
- 34. Show that the derived series has the same radius of convergence as the original series.
- 35. Evaluate $\oint_{|z-2|=2} \frac{z^3}{(z-1)^4(z-2)(z-3)} dz$.

 $(6 \times 7 = 42 \text{ marks})$

C 20208

Section D

3

Answer any **two** questions. Each question carries 13 marks.

36. (a) State and prove Cauchy's integral formula.

(b) Prove or disprove : $|\cos(z)| \le 1$ for all complex numbers z. Justify your claim.

37. (a) State and prove fundamental theorem of Algebra.

(b) Find the residues of $f(z) = \frac{z^2}{(z-1)^2(z-2)}$ at its poles.

38. (a) Evaluate using the method of residues : $\int_{0}^{2\pi} \frac{1}{a + \cos \theta} d\theta.$

(b) Evaluate $\int_{0}^{\infty} \frac{1}{x^4 + a^4} dx, a > 0.$

 $(2 \times 13 = 26 \text{ marks})$

C 20208-A	(Pages : 6)	Name
		Reg. No

SIXTH SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, MARCH 2022

Mathematics

MAT 6B 10—COMPLEX ANALYSIS

(2014 to 2018 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 30 Maximum: 30 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 30.
- 2. The candidate should check that the question paper supplied to him/her contains all the 30 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 6B 10—COMPLEX ANALYSIS

(Multiple Choice Questions for SDE Candidates)

- 1. Real part of $f(z) = \log z$ is :
 - $(A) \quad \frac{1}{2}\log(x^2+y^2).$

(B) $\log(x^2 + y^2)$.

(C) $\log(x + iy)$.

- (D) None of these.
- 2. If n is a positive integer, then $(1+i\sqrt{3})^n+(1-i\sqrt{3})^n$ is equal to :
 - (A) $2^n \sin \frac{n\pi}{2}$.

(B) $2^{n+1}\cos\frac{n\pi}{3}.$

(C) $2^{n+1}\sin\frac{n\pi}{3}.$

(D) None of these.

- 3. Real part of $f(z) = z^3$ is:
 - (A) $x^3 3xy^2$

(B) $x^3 + 3xy^2$

(C) $x^3 - 3x^2y$

(D) None of these.

- 4. Value of $(1 + i)^{24}$ is :
 - (A) 2^{24} .

(B) $(\sqrt{2})^{24} e^{\frac{i\pi}{4}}$.

(C) 2^{12} .

- (D) None of these.
- 5. If f(z) is a real valued analytic function in a domain D, then:
 - (A) f(z) is a constant.
- (B) f(z) is identically zero.
- (C) f(z) has modulus 1.
- (D) None of these.
- 6. The function e^{iz} has period :
 - (A) $2\pi i$.

(B) 2π .

(C) π.

- (D) 3π .
- 7. For real numbers x and y, $\sin (x + iy)$ equals :
 - (A) $\sin x \cosh y + i \cos x \sinh y$.
- (B) $\cos x \cosh y i \sin x \sinh y$.
- (C) $\sin x \cosh y i \cos x \sinh y$.
- (D) $\cos x \cosh y + i \sin x \sinh y$.

8. Real part of the function $f(z) = |z|^2$ equals:

	(A)	2 xy.	(B)	$x^2 - y^2.$		
	(C)	$x^2 + y^2.$	(D)	None of these.		
9.	Which	Which of the following is not a simply connected region?				
	(A)	Circular disk.	(B)	Half planes.		
	(C)	An annulus region.	(D)	A parallel strip.		
10.	The integral $\int\limits_{ z =2\pi} \frac{\sin z}{(z-\pi)^2} dz$ where the curve is taken anti-clockwise, equals					
		$-2\pi i$.	(B)			
	(C)	0.	(D)	$4\pi i$.		
11.	The value of the integral $\int_{C} \frac{dz}{(z-a)^{10}}$, where C is $ z-a =3$ is:					
	(A)	0.	(B)	$2\pi i$.		
	(C)	πi .	(D)	None of these.		
12.	The val	tue of the integral $\int_{C}^{c} \frac{e^{5z}}{z^3} dz$, where	c C is	z = 3 is:		
	(A)	$10\pi i$.	(B)	$2\pi i$.		
	(C)	$25\pi i$.	(D)	None of these.		
13.	Value o	of the integral $\int_{0}^{x} e^{it} dt$ is:				
	(A)	2i.	(B)	0.		
	(C)	$2\pi i$.	(D)	None of these.		
14.	If n is a	any non-zero integer, then $\int\limits_0^{2\pi}e^{in\theta}d\theta$	lθ equ	nals:		
	(A)	0.	(B)	2π .		
	(C)	1.	(D)	None of these.		
15.	Converse of Cauchy's integral theorem is known as:					
	(Λ)	Liouvillo's theorem	(B)	Couract's theorem		

(D) Euler's theorem.

(C) Morera's theorem.

16. A Maclaurin series is a Taylor series with centre:

(A) $z_0 = 1$.

(B) $z_0 = 0$.

(C) $z_0 = 2$.

(D) None of these.

17. The radius of convergence of the power series of the function $f(z) = \frac{1}{1-z}$ about z = 1/4 is:

(A) 1.

(B) 1/4.

(C) ¾.

(D) 0.

18. If f(z) is entire, then $f(z) = \sum_{n=1}^{\infty} a_n z^n$ has radius of convergence :

(A) 0.

(B) e.

(C) ∞ .

(D) None of these.

19. A power series $\sum\limits_{n=0}^{\infty}a_{n}\left(z-z_{0}\right)^{n}$ always converges for :

- (A) at least one point z.
- (B) all complex numbers z.
- (C) at all z which are either real or purely imaginary.
- (D) at all z with $|z-z_0| < R$ for some R > 0.

20. A function f(z) given by a power series is analytic at:

- (A) Every point of its domain.
- (B) Every point inside its circle of convergence.
- (C) Every point on the circle of convergence.
- (D) Every point in the complex plane.

21. The singular points of the function $f(z) = \frac{1}{4z - z^2}$ are:

- (A) z = 0 and z = -4.
- (B) z = 0 and z = 4.
- (C) z = 4 and z = -4.
- (D) z = 2 and z = -2.

C 20208-A

22. The constant term in the Laurent series expansion of $f(z) = \frac{e^z}{z^2}$ in the region $0 < |z| < \infty$ is :

5

(A) 0.

(B) ½.

(C) 2.

(D) None of these.

23. If f(z) has a zero of order m at z_0 and g(z) has a pole of order n at z_0 and $n \le m$, then the product f(z)g(z) has at z_0 :

- (A) An essential singularity.
- (B) A pole of order m n.
- (C) A removable singularity.
- (D) A pole of order m-1.

24. If f(z) has a pole of order m at z_0 , then $g(z) = \frac{f'(z)}{f(z)}$, at z_0 has:

(A) A simple pole.

- (B) A pole of order m.
- (C) A pole of order m + 1.
- (D) A pole of order m-1.

25. For $f(z) = \frac{\tan z}{z}$, z = 0 is a:

- (A) Essential singularity.
- (B) Simple pole.
- (C) Removable singularity.
- (D) Double pole.

26. Which of the following function has a simple zero at z = 0 and an essential singularity z = 1?

(A) $\frac{1}{z - 1}$

(B) $ze^{\frac{1}{1+z}}$.

(C) $(z-1)e^{\frac{1}{z}}$.

(D) $(z-1)e^{\frac{1}{z-1}}$

27. The function $f(z) = \frac{z^2 + 2iz + 3}{(z - i)^2(z + i)}$ at z = i has:

(A) Regular point.

(B) Simple pole.

(C) Double pole.

(D) Removable singularity.

28. Singularities of a rational function are:

(A) Poles.

(B) Essential.

(C) Non-isolated.

(D) Removable.

Turn over

- 29. The singularity of the function $\frac{\sin z}{z}$ at z = 0 is :
 - (A) Essential singularity.
- (B) Simple pole.
- (C) Removable singularity.
- (D) Double pole.
- 30. At z = 1, the residue of $f(z) = \frac{z^2 + 1}{z(z 1)}$ is:
 - (A) 1.

(B) 0.

(C) 1.

(D) 2.