D 30572 (Pages : 2) Name......

## FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

**Mathematics** 

MTS 5B 09—INTRODUCTION TO GEOMETRY AND THEORY OF EQUATIONS (2020 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

## **Section A**

Answer any number of questions.

Each question carries 2 marks. Ceiling is 20.

- 1. Does the equation  $3x^2 10xy + 3y^2 + 14x 2y + 3 = 0$  represents a hyperbola? Justify your answer.
- 2. Find the vertex and directrix of the parabola  $y^2 = 4x$ .
- 3. Show that the parametric equation  $x = 3\cos t$ ,  $y = 2\sin t$ ;  $-\pi < t \le \pi$  represents the ellipse  $\frac{x^2}{9} + \frac{y^2}{4} = 1.$
- 4. State the reflection property of the parabola.
- 5. Find the reminder when  $f(x) = x^7 7x^3 + 1$  is divisible by x + 1.
- 6. Find the sum of the squares of the roots of the equation  $x^4 2x + 1 = 0$ .
- 7. State the Fundamental Theorem of Algebra.
- 8. Solve the equation  $(a-b)x^2 (b-c)x + (c-a) = 0$ .
- 9. Find  $\triangle$  of the equation  $x^3 + 10x 7 = 0$ .
- 10. Show that  $\sqrt[3]{\sqrt{5}+2} \sqrt[3]{\sqrt{5}-2} = 1$ .

Turn over

2 **D** 30572

- 11. Show that the equation  $x^6 x^4 + 4x 11 = 0$  has a root lies between 1 and 2.
- 12. Find the real root of the cubic equation  $x^3 + 9x 2 = 0$ .

## **Section B**

Answer any number of questions.

Each question carries 5 marks. Ceiling is 30.

- 13. (i) State the Fundamental theorem of Affine Geometry.
  - (ii) Determine the affine transformation which maps the points (0,0), (1,0) and (0,1) to the points (3,2), (5,8) and (7,3) respectively.
- 14. Determine the image of the line y = -x under the affine transformation  $t(x) = \begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix} \times + \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ .
- 15. Solve  $x^3 9x^2 + 26x 24 = 0$  if the roots form an arithmetic progression  $\alpha \beta$ ,  $\alpha$ ,  $\alpha + \beta$ .
- 16. Factorize into real linear and quadratic factors of the polynomial  $f(x) = x^4 + 9$ .
- 17. Find the rational roots of the equation  $4x^3 4x^2 x + 1 = 0$ .
- 18. Separate the roots of the equation  $2x^5 5x^4 + 10x^2 10x + 1 = 0$ .
- 19. Show that the necessary and sufficient condition for an equation  $x^3 + px + q = 0$  to have three real and distinct roots is  $4p^3 + 27q^2 < 0$ .

## **Section C**

Answer any **one** question. The question carries 10 marks.

- (i) Prove that a perpendicular from a focus of a parabola to a tangent meets the tangent on the directrix of the parabola.
  - (ii) Determine the equation of the tangent to the ellipse with parametric equations  $x = 3 \cos t$ ,  $y = \sin t$  at the point with parameter  $t = \pi/4$ . Deduce the co-ordinates of the point of intersection of this tangent with the x-axis.
- 21. Solve the cubic equation  $x^3 3x^2 + 12x + 16 = 0$  by using Carden's formula.

 $(1 \times 10 = 10 \text{ marks})$