C 4161 (Pages : 4) Name......

SECOND SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MAT 2B 02—CALCULUS

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type Questions)

Answer all questions.

Each question carries 1 mark.

- 1. What is the minimum value of $f(x) = \cos x$, on $[-\pi/2, \pi/2]$.
- 2. Evaluate $\lim_{x \to \infty} \left(5 + \frac{1}{x}\right)$.
- 3. Find the average value of $f(x) = 4 x^2$ on [0, 3].
- 4. Evaluate $\int_{1}^{32} x^{-6/5} dx$.
- 5. Evaluate the sum $\sum_{k=1}^{2} \frac{6k}{k+1}$.
- 6. Suppose that f is integrable and that $\int_{1}^{2} f(x) dx = -4$, $\int_{1}^{5} f(x) dx = 6$. Evaluate $\int_{2}^{5} f(x) dx$.
- 7. How do you define and calculate the area of the region between the graphs of two continuous functions?
- 8. How do you define and calculate the length of the graph of a smooth function over a closed interval?
- 9. How do you define and calculate the area of the surface swept out by revolving the graph of a smooth function y = f(x), $a \le x \le b$, about the *x*-axis?

Turn over

2 C 4161

- 10. What is the moment about the origin of a thin road along the *x*-axis with density function $\delta(x)$?
- 11. Define the work done by a variable force F(x) directed along the *x*-axis from x = a to x = b.
- 12. State Hooke's Law for springs.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. State the Max-Min Theorem for Continuous Functions.
- 14. Verify Mean Value Theorem for the function $f(x) = x^2 + 2x 1$, in the interval [0,1].
- 15. Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0.
- 16. Evaluate $\int_{-4}^{4} |x| dx$.
- 17. Using substitution evaluate the integral $\int_0^3 \sqrt{y+1} dy$.
- 18. Find the area of the region enclosed by the line y = 2 and curve $y = x^2 2$.
- 19. The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$, and the *x*-axis is revolved about the *x*-axis to generate a solid. Find its volume.
- 20. Set up an integral for the length of the curve $y = x^2$, in the interval $-1 \le x \le 2$.
- 21. Set up an integral for the area of the surface generated by revolving the curve $y = \tan x$, $0 \le x \le \pi/4$; about x-axis.
- 22. Show that the center of mass of a straight, thin strip or rod of constant density lies halfway between its two ends.
- 23. Find the work done by a force of $F(x) = 1/x^2$ N along the x-axis from x = 1 m to x = 10 m.
- 24. What is the Center of Mass of a thin plate covering a region in the *xy*-plane?

 $(9 \times 2 = 18 \text{ marks})$

C 4161

Part C (Short Essay Type)

3

Answer any **six** questions.

Each question carries 5 marks.

25. Given
$$f'(x) = (x-1)^2 (x+2)^2$$
.

- (a) What are the critical points of f?
- (b) On what intervals is *f* increasing or decreasing?
- 26. Find the asymptotes of the curve:

$$y = \frac{x+3}{x+2}.$$

- 27. State and prove Rolle's Theorem.
- 28. Find two positive numbers whose sum is 20 and whose product is as large as possible.
- 29. Find the area of the region between the x-axis and the graph of $f(x) = x^3 x^2 2x$, $-1 \le x \le 2$.
- 30. A pyramid 3 m high has a square base that is 3 m on a side. The cross-section of the pyramid perpendicular to the altitude *x* m down from the vertex is a square *x* m on a side. Find the volume of the pyramid.
- 31. Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{3/2} 1$, $0 \le x \le 1$.
- 32. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- 33. Find the moment about the *x*-axis of a wire of constant density that lies along the curve $y = \sqrt{x}$ from x = 0 to x = 2.

 $(6 \times 5 = 30 \text{ marks})$

Turn over

4 C 4161

Part D (Essay Type)

Answer any **two** questions. Each question carries 10 marks.

34. (a) Sketch the Graph of $y = (x-2)^3 + 1$. Include the co-ordinates of inflection point in the graph.

(5 marks)

(b) Find the intervals on which $g(x) = -x^3 + 12x + 5$, $-3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values and what are these values?

(5 marks)

35. (a) If f is continuous at every point of [a, b] and F is any antiderivative of f on [a, b], then prove that

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

(5 marks)

(b) A surveyor, standing 30ft from the base of a building, measures the angle of elevation to the top of the building to be 75°. How accurately must the angle be measured for the percentage error in estimating the height of the building to be less than 4 %?

(5 marks)

36. (a) Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the *x*-axis.

(5 marks)

(b) Find the center of mass of a thin plate of constant density δ covering the region bounded above by the parabola $y = 4 - x^2$ and below by the *x*-axis.

(5 marks)

 $[2 \times 10 = 20 \text{ marks}]$

C 4161-A	(Pages: 4)	Name
		Reg. No

SECOND SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, APRIL 2021

Mathematics

MAT 2B 02—CALCULUS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 2B 02—CALCULUS

(Multiple Choice Questions for SDE Candidates)

- 1. A differentiable function is always ———.
 - (A) Continuous.

(B) Not continuous.

(C) Integrable.

- (D) Not integrable.
- 2. If $\int_{1}^{2} f(x) dx = 5$, then $\int_{1}^{2} f(u) du = ----$
 - (A) 20.

(B) 15.

(C) 5.

- (D) 10.
- 3. What are the critical points of f when f'(x) = (x-1)(x-2)?
 - (A) 0, 1 and 2.

(B) 1 and 2.

(C) -1 and -2.

- (D) None of these.
- 4. Suppose that $\int_{2}^{4} f(x) dx = 10$. Find $\int_{2}^{4} -f(x) dx$:
 - (A) 10.

(B) -10.

(C) 20.

- (D) -20.
- 5. One Newton–Metre work is called ———.
 - (A) Newton-Metre.

(B) Joule.

(C) Erg.

- (D) None of these.
- 6. $\int_{3}^{3} f(x) dx = ----$
 - (A) 3.

(B) f(3).

(C) 0.

- (D) f(0).
- 7. Find the average value of $f(x) = 2 x^2$ on [0, 2]:
 - (A) 2.

(B) -2.

(C) 4.

(D) None of these.

8.
$$\frac{d}{dx}(\cos x) = ---$$

(A) $\sin x$.

(B) $-\sin x$.

(C) $-\cos x$.

(D) $-\csc x \cdot \cot x$.

$$9. \quad \frac{d}{dy}\left(x^2+x+1\right) = ---$$

(A) 2x + 1.

(B) 2y + 1.

(C) 0.

(D) 1.

10.
$$\sum_{k=2}^{4} \frac{K}{K+1} = ---$$

(A) $2\frac{13}{60}$.

(B) $3\frac{12}{60}$. (D) $2\frac{12}{60}$.

(C) $1\frac{13}{60}$.

- 11. If f is continuous at every point of a closed interval I, then f assumes:
 - An absolute maximum value M but not an absolute minimum value.
 - (B) An absolute minimum value *m* but not an absolute maximum value.
 - Both an absolute maximum value M and an absolute minimum value m.
 - Neither an absolute maximum nor an absolute minimum.

12. Consider the function
$$f(x) = \begin{cases} x+1, & -1 \le x < 0 \\ 0, & x=0 \\ x-1, & 0 < x \le 1 \end{cases}$$

Then which of the following statements is NOT true?

- (A) f is continuous at every point of [-1,1], except at x = 0.
- (B) f has a non-removable discontinuity at x = 0.
- (C) f has neither a highest nor a lowest point on [-1,1].
- (D) f has the highest value 1 and the lowest value -1 on [-1,1].
- 13. The only domain points where a function can assume extreme values are -
 - (A) Critical points and end points.
- (B) Critical points only.

End points only.

None of the above. (D)

Turn over

- 14. What are the critical points of f when f'(x) = (x-1)(x-2)?
 - (A) 0, 1 and 2.

(B) -1 and -2.

(C) 1 and 2.

- (D) No critical points.
- 15. The value or values of c that satisfy the equation $\frac{f(b)-f(a)}{b-a}=f'(c)$ in the conclusion of Mean Value Theorem for the function $f(x)=x^2+2x-1$ and the interval [0,1] is:
 - (A) 1.

 $(B) \quad \frac{1}{2}.$

(C) $\frac{1}{3}$

- (D) $\frac{1}{4}$.
- 16. The tangent at the point of inflection is called
 - (A) Inflectional tangent.
- (B) Vertical tangent.

(C) Asymptote.

- (D) None of these.
- 17. The curve $y = x^4$ has
 - (A) Inflection point at x = 0.
- (B) No inflection point at x = 0.
- (C) No inflection point at x = 1.
- (D) Inflection point at x = 1.
- 18. $\lim_{x \to -\infty} \frac{2x^2 3}{7x + 4} = \underline{\hspace{1cm}}$
 - (A) $\frac{2}{7}$.

(B) 0.

(C) ∞ .

- (D) $-\infty$.
- 19. $y = \sec x = \frac{1}{\cos x}$ has
 - (A) Horizontal asymptotes at even-integer multiplies of $\frac{\pi}{2}$.
 - (B) Vertical asymptotes at even-integer multiplies of $\frac{\pi}{2}$.
 - (C) Horizontal asymptotes at odd-integer multiplies of $\frac{\pi}{2}$.
 - (D) Vertical asymptotes at odd-integer multiplies of $\frac{\pi}{2}$.
- 20. The asymptotes of the curve $y = \frac{x+3}{x+2}$ are ______.
 - (A) The line y = 1 only.
- (B) The line x = -2 only.
- (C) The lines y = 1 and x = -2.
- (D) None of these.