Q.P Code	D 113035	Total Pages: 2	Name
			Register No.

FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2024

(CUFYUGP)

MAT1MN102 - CACULUS OF A SINGLE VARIABLE

2024 Admissions

Maximum Time: 2 Hours Maximum Marks:70

Section A

All Question can be answered. Each Question carries 3 marks (Ceiling: 24 Marks)

1	Find $\lim_{x\to 3} \frac{x^2 - 5x + 6}{x - 3}$		
2	Find $\lim_{x\to 2^+} \frac{x}{x^2-4}$		
3	Does the function $f(x) = \begin{cases} \sin x & \text{if } x \leq \pi/2 \\ x^2 & \text{if } x > \pi/2 \end{cases}$, continous at $\pi/2$? Why?		
4	A robot moves in the positive direction along a straight line so that after t minutes its		
	distance is $s = 6t^4$ feet from the origin. Find the average velocity of the robot over the		
	interval $[2, 4]$.		
5	Using the definition of differentiation find $\frac{d}{dx}[x^2]$		

- Find $\frac{dy}{dx}$ if $y = \ln(\ln(\ln x))$ 6
- Find $\lim_{x \to 0} \frac{\ln \cos x}{x}$; $x \in (0, \pi/2)$ 7
- Show that the function $f(x) = x^4 2x^3$ is not one-to- one on $(-\infty, \infty)$.
- 9 Explain the term concavity of a function
- Find all critical points of $f(x) = 3x^{5/3} 15x^{2/3}$ 10

570120

Section B

All Question can be answered. Each Question carries 6 marks (Ceiling: 36 Marks))

	Till Question can be answered. Each Question earlies o marks (Coming . 50 Warns))		
11	$\lim_{x \to +\infty} \frac{1 - e^x}{1 + e^x}$		
12	Discuss the continuity of the function $\frac{x+2}{x^2-4}$		
13	Let $f(x) = \begin{cases} x^2 - 3x + 2 & \text{if } x \le 2\\ x & \text{if } x > 2 \end{cases}$		
	Determine whether f is differentiable at $x = 2$. If so, find the value of the derivative there		
14	Find $\frac{d^2y}{dx^2}$, if $y = \sin\sqrt{x} + \cos(5x)$		
15	At what point is the tangent line to the curve $y^3 = 2x^2$ perpendicular to the line $x + 2y - 2 =$		
	0?		
16	Use logarithmic differentiation to find $\frac{dy}{dx}$, if $y = (x^2 + 1)^{\cos x}$		
17	Find the inflection points of the function $f(x) = xe^{-x}$		
18	Find the relative extrema of $f(x) = \frac{x+3}{x-2}$		

Section C

Answer any ONE. Each Question carries 10 marks (1x10=10 Marks))

- 19 Using the definition of differentiation find
 - 1. $\frac{d}{dx}[\sin x]$
 - $2. \ \frac{d}{dx}[\sqrt{x}]$
- Consider the function $f(x) = x^5 + x + 1$. 20
 - 1. Show that f is one-to-one on the interval $(-\infty, \infty)$.
 - 2. Find a formula for the derivative of f.
 - 3. Compute $(f^{-1})'(1)$

570120