D 12645	(Pages: 3)	Name
		Reg. No

FIRST SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

Mathematics

MTS 1B 01—BASIC LOGIC AND NUMBER THEORY

(2021 Admissions)

Time: Two Hour and a Half

Maximum: 80 Marks

Section A

Answer atleast **ten** questions. Each question carries 3 marks. All questions can be attended. Overall ceiling 30.

- 1. Verify that $p \lor p \equiv p$ and $p \land p \equiv p$.
- 2. Let P(x) denote the statement "x > 3." What is the truth value of the quantification $\exists x \ P(x)$, where the universe of discourse is the set of real numbers?
- 3. State the barber paradox presented by Bertrand Russell in 1918.
- 4. Prove that if n is a positive integer, then n is odd if and only if 5n + 6 is odd.
- 5. Prove the following formula for the sum of the terms in a "geometric progression":

$$1 + r + r^2 + ... + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

- 6. Let a and b positive integers such that $a \mid b$ and $b \mid a$. Then prove that a = b.
- 7. Briefly explain Mahavira's puzzle.
- 8. Find the number of positive integers ≤ 2076 and divisible by neither 4 nor 5.
- 9. Prove that every composite number n has a prime factor $\leq \left| \sqrt{n} \right|$.
- 10. Show that any two consecutive Fibonacci numbers are relatively prime.

Turn over

2 **D 12645**

- 11. Let a and b be integers, not both zero. Then prove that a and b are relatively prime if and only if there exist integers α and β such that $1 = \alpha a + \beta b$.
- 12. Prove that if $a \mid$ and $b \mid c$, and (a, b) = 1, then $ab \mid c$.
- 13. Prove that every integer $n \ge 2$ has a prime factor.
- 14. Let f_n denote the n^{th} Fermat number. Then prove that $f_n = f_{n-1}^2 2f_{n-1} + 2$, where $n \ge 1$.
- 15. Express gcd (28, 12) as a linear combination of 28 and 12.

 $(10 \times 3 = 30 \text{ marks})$

Section B

Answer atleast **five** questions. Each question carries 6 marks. All questions can be attended. Overall ceiling 30.

- 16. Show that the propositions $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.
- 17. Show that the assertion "All primes are odd" is false.
- 18. Let b be an integer ≥ 2 . Suppose b+1 integers are randomly selected. Prove that the difference of two of them is divisible by b.
- 19. If p is a prime and $p \mid a_1 a_2 \dots a_n$, then prove that $p \mid a_i$ at for some i, where $1 \le i \le n$.
- 20. Show that $11 \times 14n + 1$ is a composite number.
- 21. There are infinitely many primes of the form 4n + 3.
- 22. Show that 2^{11213} 1 is not divisible by 11.
- 23. Prove that if $n \ge 1$ and gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

 $(5 \times 6 = 30 \text{ marks})$

3 D 12645

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. (a) State six standard methods for proving theorems and briefly explain any two of them with the help of examples.
 - (b) Using the laws of logic simplify the Boolean Expression $(p \land \neg q) \lor q \lor (\neg p \land q)$.
- 25. (a) Prove that there is no polynomial f(n) with integral coefficients that will produce primes for all integers n.
 - (b) State the prime number theorem and find six consecutive integers that are composites.
- 26. (a) State and prove Fundamental Theorem of Arithmetic.
 - (b) Find the largest power of 3 that divides 207!
- 27. (a) Let p be a prime and a any integer such that $p \mid a$. Then show that the least residues of the integers a, 2a,3a,...,(p-1) a modulo p are a permutation of the integers

$$1, 2, 3,...,(p-1).$$

(b) Find the remainder when 24¹⁹⁴⁷ is divided by 17.

 $(2 \times 10 = 20 \text{ marks})$