FIFTH SEMESTER U.G. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS-UG)

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2019 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer at least **ten** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Is the union of two disjoint denumerable sets denumerable?
- 2. If $a, b \in \mathbb{R}$ with ab = 0, then prove that either a = 0 or b = 0.
- 3. If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then show that a = 0.
- 4. Find all real numbers x satisfying the inequality $x^2 > 3x + 4$.
- 5. If 0 < c < 1, then show that $0 < c^2 < c < 1$.
- 6. If *x* and $y \in \mathbb{R}$ with x < y prove that there exists an irrational number *z* such that x < z < y.
- 7. State characterization theorem for intervals.
- 8. Test the convergence of $\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right)$.
- 9. Show that every convergent sequence is a Cauchy sequence.
- 10. Define Supremum of a set and give example of a set which has no Supremum.
- 11. What can be said about the complex number z if $z = -\overline{z}$.
- 12. Find modulus of the complex number z = -9i.
- 13. Find real and imaginary parts of the complex function $f(z) = \overline{z}$ as functions of r and θ .
- 14. State nested interval property.
- 15. Write the equation of (a) a closed disk of radius ρ centred at z_0 ; (b) equation of a circle with centre z_0 and radius ρ .

 $(10 \times 3 = 30 \text{ marks})$

Turn over

2 **D 10667**

Section B

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

16. State and prove Cantor's theorem.

17. Prove that there does not exist a rational number r such that $r^2 = 2$.

18. Solve the inequality $|2x-1| \le x+1$.

19. Let S be a non-empty set in \mathbb{R} , that is bounded above. Prove that Sup (a + S) = a + Sup S.

20. State and prove Archimedean property.

21. Prove that a sequence in \mathbb{R} can have at one limit.

22. Find the image of the half plane $\text{Re } z \ge 2$ under the mapping W = iZ.

23. Prove that $|z_1 - z_2| \ge ||z_1| - |z_2||$.

 $(5 \times 6 = 30 \text{ marks})$

Section C

Answer any **two** questions. Each question carries 10 marks.

24. (a) State and prove Arithmetic-geometric inequality.

(b) Let $a, b, c \in \mathbb{R}$. Then if ab < 0 then show that either a > 0 and b < 0 or a < 0 and b > 0.

(c) If 1 < C, then show that $1 < C < C^2$.

25. (a) Prove that every contractive sequence is a Cauchy sequence.

(b) Prove that if a sequence X of real numbers converges to a real number x, then any subsequence of X also converge to x.

26. (a) The polynomial equation $x^3 - 7x + 2 = 0$ has a solution between 0 and 1. Use an approximate contractive sequence to calculate the solution correct to 4 decimal places.

(b) Show that $\lim \left(n^{\frac{1}{n}}\right) = 1$.

27. (a) Find an upperbound for $\left| \frac{1}{z^4 - 5z + 1} \right|$ if |z| = 2.

(b) Find the image of the vertical strip $2 \le \text{Re } Z < 3$ under the mapping f(Z) = 3Z.

(c) Find the domain of $f(z) = \frac{iz}{|z|-1}$.

 $(2 \times 10 = 20 \text{ marks})$