D 31839	(Pages : 2)	Name
		Reg No

THIRD SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Statistics

STA 3C 03—PROBABILITY DISTRIBUTIONS AND SAMPLING THEORY

(2019 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Use of calculator and Statistical table are permitted.

Part A (Short Answer Type Questions)

Each question carries 2 marks.

Maximum marks that can be scored from this part is 20.

- 1. If X is a random variable following discrete uniform distribution over the numbers -1,0 and 1; find the variance of X.
- 2. For two independent Poisson random variables, $P(X = 0) = e^{-3}$, $P(Y = 0) = e^{-2}$. Find P(X + Y = 2).
- 3. Write the p.d.f. of an exponential random variable with mean 0.2.
- 4. Obtain P(|X-5| < 3), where X follows N $(5, 3^2)$.
- 5. Point out one of the strengths and weaknesses of Chebyshev's inequality.
- 6. Define convergence in distribution.
- 7. State Weak Law of Large Numbers.
- 8. Define census and sampling.
- 9. A box contains 4 black balls and 6 white balls. 2 balls are taken at random one by one. What is the probability that all the balls taken are white : (i) If balls are taken without replacement ; (ii) With replacement.
- 10. Find the probability that the variance of a sample of size 12 taken from a normal population with mean 10 and variance 9 is greater than 10.28.
- 11. If X and Y are independent standard normal random variables, identify the probability distributions of (i) X^2 ; and (ii) $[X^2 + Y^2]$.
- 12. Define t-distribution.

Turn over

2 D 31839

Part B (Short Essay/Paragraph Type Questions)

Each question carries 5 marks.

Maximum marks that can be scored from this part is 30.

- 13. Obtain the mode of X following B (n, p)
- 14. Show that the sum of independent exponential random variables with common parameter λ -follows gamma distribution.
- 15. State Chebyshev's inequality. Let X be a random variable following rectangular distribution over [5, 15]. Use Chebyshev's inequality to find an upper bound for P(|X 10| > 4.33).
- 16. State and prove Bernoulli's Law of Large numbers.
- 17. Using central limit theorem, obtain the probability distribution of the mean of a large sample of size n taken from rectangular distribution over [0, 5].
- 18. Explain systematic random sampling.
- 19. If F follow F (n_1, n_2) , show that 1/F follow F (n_2, n_1)

Part C (Essay type Questions)

Answer any **one** question.

Each question carries 10 marks.

Maximum marks that can be scored from this part is 10.

- 20. (i) Define normal distribution. State any four of the properties of normal distribution.
 - (ii) If the random variable X following N $\{\mu, \sigma^2\}$, obtain the quartile deviation of X.
- 21. (i) Derive the (a) m.g.f.; (b) mean; and (c) variance of a random variable X following chi square distribution with n degrees of freedom.
 - (ii) State and prove the additive property of chi-square distribution.

 $(1 \times 10 = 10 \text{ marks})$