D 100188	(Pages : 3)	Name
		Reg No

SIXTH SEMESTER UG (CUCBCSS-UG) DEGREE EXAMINATION, MARCH 2024

Mathematics

MAT 6B 12—NUMBER THEORY AND LINEAR ALGEBRA

(2018 Admissions only)

Time: Three Hours

Maximum Marks: 120

Section A

Answer all questions.
Each question carries 1 mark.

- 1. Find gcd (143, 227).
- 2. Find some integer solutions of 3x + 6y = 18.
- 3. Define *e*-prime.
- 4. Show that 509 is a prime.
- 5. Let n > 1 be fixed and a, b and c be arbitrary integers. Then prove that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$.
- 6. $\phi(181) = ----$
- 7. State Wilson's Theorem.
- 8. Define vector space.
- 9. Show that every singleton subset $\{x\}$ of a vector space V with $x \neq 0_v$ is linearly independent.
- 10. Decide whether $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by f(x, y, z) = (y, z, 0) is linear.
- 11. Define range space of a linear mapping.
- 12. If $f: V \to W$ is linear from f is injective if and only if $\operatorname{Ker} f = ----$.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any ten questions. Each question carries 4 marks.

- 13. Using Euclidean Algorithm calculate gcd(10535, 4039).
- 14. Find the complete solution of the linear Diophantine equation:

$$172x + 20y = 1000$$
.

Also find solutions in positive integers, if they exist.

Turn over

D 100188

- 15. Prove that the linear Diophantine equation ax + by = c has a solution if and only if $d \mid c$, where $d = \gcd(a, b)$.
- 16. If p is a prime and $p \mid ab$, then prove that $p \mid a$ or $p \mid b$.
- 17. Using Sieve of Eratosthenes find all primes not exceeding 100.
- 18. Show that 41 divides $2^{20} 1$.
- 19. Find the remainder obtained when 5^{38} is divided by 11.
- 20. Find the lcm of 12560 and 5030.
- 21. Investigate how many times the prime 3 appears in 9!.
- 22. Define vector space.
- 23. Prove that any line L that passes through the origin is a subspace of \mathbb{R}^2 .
- 24. If the vector space \mathbb{R}^4 let:

$$A = Span \{(1, 2, 0, 1), (-1, 1, 1, 1);$$

$$B = Span \{(0, 0, 1, 1), (2, 2, 2, 2)\}.$$

Determine $A \cap B$.

- 25. Determine whether the subset $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}-1\\2\\1\end{bmatrix},\begin{bmatrix}2\\1\\1\end{bmatrix}\right\}$ of $\operatorname{Mat}_{3x1}\mathbb{R}$ is linearly dependent.
- 26. If $f: \mathbb{R} \to \mathbb{R}$ is linear and $\upsilon: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $\upsilon(x,y) = (x,y-f(x))$ prove that υ is an isomorphism.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** questions. Each question carries 7 marks.

- 27. If k > 0, then prove that gcd(ka, kb) = k gcd(a, b).
- 28. State and Prove Euclid's Lemma.
- 29. Prove that $5^{2n+2} 24n 25$ is divisible by 576.
- 30. For each positive integer $n \ge 1$, prove that $n = \sum_{d|n} \phi(d)$ the sum being extended over all positive divisors of n.
- 31. Find the last two digits in the decimal representation of 3^{256} .
- 32. Prove that the intersection of any two subspaces of a vector space V is a subspace of V.

D 100188

- 33. Let S_1 and S_2 be non-empty subsets of a vector space such that $S_1 \subseteq S_2$. Prove that
 - (a) If S_2 is linearly independent then so is S_1 ;
 - (b) If S_1 is linearly dependent then so is S_2 .
- 34. Examine that the linear mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$f(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)$$

is neither surjective nor injective.

35. Let V and W be vector spaces of finite dimension over a field F. If $f: V \to W$ is linear then prove that dim V = dim Im f + dim Ker f.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 13 marks.

- 36. If gcd(a, b) = d, then prove that $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
- 37. State and prove Chinese Remainder Theorem.
- 38. Prove that a non-empty subset S of a vector space V is a basis of V if and only if every element of V can be expressed in a unique way as a linear combination of elements of S.

 $(2 \times 13 = 26 \text{ marks})$