Maximum: 80 Marks

D 111972	(Pages: 3)	Name
		Reg No

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTS 3B 03—CALCULUS OF SINGLE VARIABLE—2

(2019—2023 Admissions)

Time: Two Hours and a Half

Section A

All questions can be attended. Each question carries 2 marks.

- 1. Differentiate the function $f(x) = \log\left(\frac{x}{\ln(x)}\right)$.
- 2. Find the derivative of $y = \log(|\sec(x) + \tan(x)|)$.
- 3. Find $\lim_{x \to 0} \frac{1 \cos x}{1 \cos(2x)}$.
- 4. Show that $\cosh^2 x \sinh^2 x = 1$.
- 5. Find $\lim_{n\to\infty} e^{\frac{1+n}{1-n}}$.
- 6. Determine whether the sequence $a_n = 1 + (-1)^n / n^2$ converges or diverges. If it converges, find the limit.
- 7. Express $.111\overline{1}...$ as a rational number.
- 8. State the Squeeze Theorem.
- 9. By using the power series expansion of $\sin x$, show that $\frac{d}{dx}(\sin x) = \cos x$.
- 10. Find the Maclaurian series expansion of $\frac{1}{1+x}$.
- 11. Find the rectangular equation of a curve whose parametric equation is x = t + 1, $y = t^2 1$.
- 12. Find the equation of the tangent to the ellipse $x = 3\cos t$, $y = 2\sin t$ at $t = \pi/4$.
- 13. Find an equation of the line that passes through the point (-1, 0, 2) and is parallel to the vector (1, 5, -4).

Turn over

2 **D** 111972

- 14. Find the equation of the surface $z = x^2 + y^2$ in cylindrical co-ordinates.
- 15. Find r'(t) if $r(t) = 2\cos ti + 3\sin tj + 3tk$.

 $(15 \times 2 = 30 \text{ marks})$ Max. Ceiling: 25 marks

Section B

All questions can be attended. Each question carries 5 marks.

- 16. Evaluate:
 - (i) $\lim_{x \to 0} \frac{\tan 5x}{\sin 2x}.$
 - (ii) $\lim_{x\to 0} \frac{x^3 3\sin^2 x}{x^2}$.
- 17. Find the derivative of $y = (\cos x)^x$.
- 18. Find $\int x^2 e^{-x} dx$.
- 19. Use the integral test to determine the series $\sum_{1}^{\infty} \frac{1}{n^2}$ converge or diverge.
- 20. Find the interval of convergence and radius of convergence of the power series $\sum_{0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$.
- 21. Find the Maclaurian series for $\frac{1}{\sqrt{1-x}}$ and determine its interval of convergence.
- 22. Find $\frac{d^2y}{dx^2}$ for the parametric equation $x = a \cos t$, $y = b \sin t$.
- 23. Identify and sketch the graph of the surface $x^2 x^2 y^2 = 1$.

 $(8 \times 5 = 40 \text{ marks})$ Max. Ceiling: 35 marks

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. (i) Show that $\int \frac{dx}{\sqrt{4x^2 9}} dx = \frac{1}{2} \cosh^{-1} \left(\frac{2x}{3}\right), x > 3/2.$
 - (ii) Find $\int_{-\infty}^{0} \frac{e^x}{\sqrt{1+e^{2x}}} dx.$
 - (iii) Find $\lim_{x\to 0} (\tan x)^x$.

3 D 111972

- 25. (i) Let C be the ellipse $r(t) = 3\cos t + 2\sin t$. Find T(t) and N(t) at $t = \pi/4$.
 - (ii) Find the curvature of the curve $r(t) = ti + \frac{1}{t}j$ at t = 1.
- 26. (i) Find the total arc length of the cardioid $r = 1 \cos \theta$.
 - (ii) Find the area of the cardioid $r = 1 + \cos \theta$.
- 27. A shell fired from a cannon, has a muzzle speed of 80 ft/s. The barrel amkes an angle of 45° with the horizontal and, the barrel opening is assumed to be at ground level.
 - (a) Find parametric equation for the shell's trajectory.
 - (b) How high does the shell rise?
 - (c) How far does the shell travel horizontally?
 - (d) What is the speed of the shell at its point of impact with the ground.

 $(2 \times 10 = 20 \text{ marks})$