C 20646 (Pages : 2) Name......

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS-UG)

Mathematics

MTS 6B 11—COMPLEX ANALYSIS

(2019 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer at least **ten** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Define holomorphic function in a domain D. And give an example for an entire function.
- 2. Prove or disprove : if f is differentiable a point z_0 , then f is continuous at that point.
- 3. Define harmonic function with example.
- 4. Prove that $\sin^2 z + \cos^2 z = 1$.
- 5. State ML inequality.
- 6. Define the path independence for a contour integral.
- 7. State maximum modulus theorem.
- 8. Prove that $\int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt$.
- 9. Prove or disprove if $\lim_{n\to\infty} z_n = 0$, then $\sum_{k=1}^{\infty} z_k$ converges.
- 10. Find the radius of convergence of $\sum_{k=1}^{\infty} \frac{z^k}{k}$.
- 11. Define pole of order n. Give an example of a function with simple pole at z = 1.
- 12. Find the principal part in the Laurent series expansion about the origin of the function $f(z) = \frac{\sin z}{z^4}$.

Turn over

2 C 20646

- 13. State Rouche's theorem.
- 14. Find the residue of $\frac{\sin z}{z}$ at z = 0.
- 15. How many zeroes of are in the disc |z| = 1 for the function $f(z) = z^9 8z^2 + 5$.

 $(10 \times 3 = 30 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Check whether the function U is harmonic or not if so find its harmonic conjugate $U(x, y) = x^3 3xy^2 5y$.
- 17. Find all the solutions of the equation $\sin z = 5$.
- 18. State and prove Fundamental theorem of algebra.
- 19. State and prove Morera's theorem.
- 20. Find the Taylor's series expansion with centre $z_0 = 2i$ of $f(z) = \frac{1}{1-z}$.
- 21. Identify the singular points and classify them $f(z) = \frac{\sin z e^{\left(\frac{1}{z-1}\right)}}{z(1+z)}$.
- 22. Find residue of $e^{e^{\left(\frac{1}{z}\right)}}$ at z = 0.
- 23. Find $\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx.$

 $(5 \times 6 = 30 \text{ marks})$

Section C (Essay Questions)

Answer any **two** questions. Each question carries 10 marks.

- 24. State and prove Cauchy Riemann Equation. Also state the sufficient condition for differentiability.
- 25. State and prove Cauchy's integral formula for derivatives.
- 26. Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for 1 < |z-2| < 2.
- 27. State and prove Cauchy's residue theorem.

 $(2 \times 10 = 20 \text{ marks})$