FIFTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MAT 5B 05—VECTOR CALCULUS

(2017—2018 Admissions)

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all questions.

Each question carries 1 mark.

1. The domain of
$$z = \sqrt{1 - x^2 - y^2}$$
 is

2.
$$\lim_{(x,y)\to(0,0)} \frac{y}{2x^2+1} =$$
 ______.

3. Find
$$\frac{dw}{dt}$$
 if $w = xy + z$, $x = \cos t$, $y = \sin t$, $z = t$.

4. Find
$$\frac{\partial f}{\partial x}$$
 if $f(x, y) = \sqrt{x^2 + y^2}$.

5. Define local maximum of a function of two variables.

6. Evaluate
$$\int_{0}^{1} \int_{0}^{2} xy(x-y) dxdy.$$

7. If R is a simple polar region whose boundaries are the rays $\theta = \alpha$ and $\theta = \beta$ and the curves $r = r_1(\theta)$ and $r = r_2(\theta)$ and if $f(r, \theta)$ is continuous on R, then $\iint_R f(r, \theta) dA = \underline{\hspace{1cm}}$.

Turn over

D 30177

8.
$$\int_0^1 \int_0^1 \int_0^1 \left(x^{2'} + y^2 + z^2 \right) dz \, dy \, dx.$$

- 9. Define Scalar field.
- 10. Give a parametrization of the cylinder $x^2 + (y-3)^2 = 9$, $0 \le z \le 5$.
- 11. Find curl **F** where $\mathbf{F} = x^2 z \mathbf{i} 2y^3 z^2 \mathbf{j} + xy^2 z \mathbf{k}$.
- 12. When a vector field is solenoidal?

 $(12 \times 1 = 12 \text{ marks})$

Section B

2

Answer any **ten** questions. Each question carries 4 marks.

- 13. Find all first and second order partial derivatives of the function $f(x, y) = x \cos y + ye^x$.
- 14. Find the linearization of $f(x, y) = x^2 + y^2 + 1$ at the point (0, 0).
- 15. Evaluate $\iint_D (x+y) dxdy$ where D is the domain in the first quadrant of the circle $x^2 + y^2 = 9$
- 16. Find the tangent plane and normal line of the surface $f(x, y, z) = x^2 + y^2 + z 9 = 0$ at the point $P_0(1, 2, 4)$.
- 17. Evaluate $\iiint_{V} \frac{1}{(x+y+z+1)^3} dxdydz$, where V is the volume bounded by the planes x=0, y=0, z=0 and x+y+z=1.
- 18. If $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $|\mathbf{r}| = r$, then show that $\nabla \left(\frac{1}{r}\right) = -\frac{\mathbf{r}}{r^3}$.

3 D 30177

- 19. Find the work done in moving a particle once round a circle C in the *xy*-plane: the circle has centre at the origin at radius 3 and the force field is given by $\mathbf{F} = (2x y + z)\mathbf{i} + (x + y z^2)\mathbf{j} + (3x 2y + 4z)\mathbf{k}.$
- 20. Find the work done by the conservative field $\mathbf{F} = xz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k} = \nabla(xyz)$ along any smooth curve C joining the points (-1, 3, 9) to (1, 6, -4).
- 21. Using Green's theorem, evaluate the integral $\oint_C xydy y^2dx$, where C is the square cut from the first quadrant by the lines x = 1 and y = 1.
- 22. Find *unit normal* to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3).
- 23. If $v = f\left(\frac{x}{z}, \frac{y}{z}\right)$, show that $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} + z \frac{\partial v}{\partial z} = 0$.
- 24. Find the Centroid of the solid (with density given by $\delta = 1$) enclosed by the cylinder $x^2 + y^2 = 4$, bounded above by the paraboloid $z = x^2 + y^2$ and below by the *xy*-plane.
- 25. Integrate $G(x, y, z) = x^2$ over the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$.
- 26. Use Stokes's theorem to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F} = xz\mathbf{i} + xy\mathbf{j} + 3xz\mathbf{k}$ and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant traversed counterclockwise as viewed from above.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** questions. Each question carries 7 marks.

27. Show that
$$f(x, y) = \begin{cases} \frac{4x^2y}{x^3 + y^3}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$$

is continuous at every point except the origin.

Turn over

4 D 30177

- 28. Find the local extreme values of the function $f(x, y) = xy x^2 y^2 2x 2y + 4$.
- 29. Find the volume of the upper region D cut from solid sphere $\rho \le 1$ by the cone $\phi = \pi/3$.
- 30. Evaluate $\int_0^4 \int_{x=y/2}^{x=(y/2)+1} \frac{2x-y}{2} dxdy$ by applying the transformation $u = \frac{2x-y}{2}$, $v = \frac{y}{2}$ and integrating over an appropriate region in the uv-plane.
- 31. Integrate $f(x, y, z) = x 3y^2 + z$ over the line segment C joining the origin and the point.
- 32. Show that ydx + xdy + 4dz is exact, and evaluate the integral $\int_{(1,1,1)}^{(2,3,-1)} ydx + xdy + 4dz$ over the line segment from (1,1,1) to (2,3,-1).
- 33. Using Green's theorem in the plane for $\oint_C (xy dx + x^2 dy)$, where C is the curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x.
- 34. Find the area of the cap cut from the hemisphere $x^2 + y^2 + z^2 = 2$, $z \ge 0$, by the cylinder $x^2 + y^2 = 1$.
- 35. Evaluate the integral $I = \int_C (3x^2dx + 2yzdy + y^2 dz)$ from A:(0,1,2) to B:(1,-1,7) by showing that **F** has a potential.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 13 marks.

- 36. If u = f(r) and $x = r \cos \theta$, $y = r \sin \theta$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$.
- 37. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the point on the ellipses that lie closest to and farthest from the origin.
- 38. Verify the Divergence Theorem for the field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ over the sphere $x^2 + y^2 + z^2 = a^2$.

 $(2 \times 13 = 26 \text{ marks})$