D 10232	(Pages : 3)	Name
		Reg No

FIFTH SEMESTER B.A./B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CUCBCSS-UG)

Mathematics

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS

Time: Three Hours

Maximum: 120 Marks

Part A

Answer all questions.
Each question carries 1 mark.

- 1. Fill in the blanks : Supremum of the set $S = \{1-1/n; n \in \mathbb{N}\}$ is ———.
- 2. Determine the set $A = \{x \in R : |x-1| < |x|\}.$
- 3. The set of all real numbers which satisfy the inequality $0 \le b < \in$, $\forall \in > 0$, then b = ----
- 4. Fill in the blanks: The Supremum property of R states that ———.
- 5. State the Trichotomy Property of R.
- 6. Give the condition for a subset of R to be an interval of R.
- 7. State the general Arithmetic Geometric mean inequality of real numbers.
- 8. Fill in the blanks: The characterization theorem of open sets states that ————
- 9. State the Bernoulli's inequality.
- 10. If a > 0, then $\lim_{n \to \infty} (a^{1/n}) = ----$.
- 11. Fill in the blanks : Arg $(-2\pi) = ----$.
- 12. Fill in the blanks: The Exponential form of -1 i = ---.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any **ten** questions. Each question carries 4 marks.

- 13. Define Supremum an Infimum of a set. Find them for the set $S = \{1/2^m 1/3^n; m, n \in \mathbb{N}\}$.
- 14. Show that there doesn't exist a rational number r such that $r^2 = 3$.
- 15. If $a, b \in \mathbb{R}$, then prove that $||a| |b|| \le ||a b||$.
- 16. Prove that a real sequence can have at most one limit.

Turn over

D 10232

- 17. If $x \in \mathbb{R}$ then prove that there exists $n_x \in \mathbb{N}$ such that $x < n_x$.
- 18. Discuss the convergence of the following sequences $X = (x_n)$, defined by (a) $x_n = \left(1 + \frac{1}{n+1}\right)^{n-1}$.

2

- 19. Show directly that a bounded monotonic sequence is a Cauchy sequence.
- 20. Define Cauchy sequence. Test whether (1/n) is a Cauchy sequence or not.
- 21. Show by an example that intersection of infinitely many open sets in R need not be open.
- 22. Discuss the convergence of $X = (x_n)$ define by $x_n = n$, if n odd and $x_n = 1/n$, if n even.
- 23. Show that every bounded sequence of real numbers has a converging subsequence.
- 24. Test the convergence of the sequence $\left(\frac{\cos n}{n}\right)$.
- 25. Express the complex number $(\sqrt{3} + i)^7$ in exponential form.
- 26. Find the principal value of $(-8i)^{\frac{1}{3}}$.

 $(10 \times 4 = 40 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 7 marks.

- 27. Prove that the set R of real numbers is uncountable.
- 28. State and prove the Ratio Test for the convergence of real sequence.
- 29. Discuss the convergence of the following sequences $X = (x_n)$, defined by (a) $x_n = \left(1 + \frac{1}{n+1}\right)^{n-1}$ and (b) $x_n = \left(\frac{1-2}{n}\right)^n$.
- 30. $X = x_n$ and $Y = y_n$ be sequences of real numbers converges to x and y respectively, then prove that X. Y converges to xy.
- 31. (a) Give an example of a convergent sequence (x_n) of positive real numbers with $\lim \left(\frac{x_{n+1}}{x_n}\right) = 1$.
 - (b) Give an example of a divergent sequence (x_n) of positive real numbers with $\lim \left(\frac{x_{n+1}}{x_n}\right) = 1$.

3 D 10232

- (c) Give your comments about the property of the sequence (x_n) of positive real numbers with $\lim \left(\frac{x_{n+1}}{x_n}\right) = 1$.
- 32. If $X = (x_n)$ is a real sequence and $X_m = (x_{m+n} : n \in \mathbb{N})$ is the m-tail of X; $m \in \mathbb{N}$, then show that X_m converges to x if and only if X converges to x.
- 33. Let $X = (x_n)$ be a bounded sequence of real numbers and $x \in \mathbb{R}$ has the property that "every converging subsequence of $X = (x_n)$ converges to x". Prove that $X = (x_n)$ converges to x.
- 34. Prove or disprove the following statement : $||z_1|| |z_2| \le |(z_1)| |(z_2)|$, $\forall z_1, z_2 \in \mathbb{C}$.
- 35. Test the convergence of (x_n) defined by $x_n = 1 + 1/2 + 1/3 + ... + 1/n$.

 $(6 \times 7 = 42 \text{ marks})$

Part D

Answer any **two** questions. Each question carries 13 marks.

- 36. Show that there exists a positive real number x such that $x^2 = 2$.
- 37. (a) If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of closed and bounded intervals, then prove that there exist a common point in every I_n .
 - (b) Test the convergence of (x_n) defined by $x_n = 1 + 1/2! + 1/3! + ... + 1/n!$.
- 38. (a) Define a closed set and "cluster point" of a set. Give examples for each of them.
 - (b) Prove that a subset of R is closed in R if and only if it contains all of its cluster points. $(2 \times 13 = 26 \text{ marks})$

D 10232-A	(Pages: 4)	Name
		Reg. No

FIFTH SEMESTER B.A./B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CUCBCSS—UG)

Mathematics

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 30 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS (Multiple Choice Questions for SDE Candidates)

1. If $A_n = \{n, n+1, n+2, \ldots\}$, then $\bigcap_{n=1}^{\infty} A_n =$

(A) 1.

 $(B) \phi$.

(C)

(D) n.

2. Consider the function $f(x) = \frac{1}{x^2}$, $x \neq 0$. Determine the image f(E) where $E = \{x \in \mathbb{R} : 1 \leq x \leq 2\}$.

(A) [1/4,1].

(B) [1/2,1].

(C) (0,1/4].

(D) [0,1/4].

3. If f(x) = 2x, and $g(x) = 3x^2 - 1$, then $(f \circ g)(x)$ is ——

(A) $12x^2 - 1$.

(B) $12x^2 - 2$.

(C) $6x^2 - 1$.

(D) $6x^2 - 2$.

4. Which of the following is true?

- (A) $(f \circ g)^{-1}(H) = g^{-1}(f^{-1}(H))$. (B) $(f \circ g)^{-1}(H) = f^{-1}(g^{-1}(H))$.
- (C) $(f \circ g)^{-1}(H) \subseteq g^{-1}(f^{-1}(H))$. (D) $(f \circ g)^{-1}(H) \subseteq f^{-1}(g^{-1}(H))$.

5. For each $n \in \mathbb{N}$ let $A_n = \{(n+1)k : k \in \mathbb{N}\}$. Then, $A_1 \cap A_2$ is:

(A) A_3 .

(C) A_5 .

(D) A₆.

6. The function $f: \mathbb{R} \to (-1,1)$ defined by $f(x) = x/\sqrt{x^2+1}$ is:

- (A) A surjection but not injection.
- (B) An injection but not surjection.
- (C) Neither injection nor surjection. (D) A bijection.

(A) $\{1, 2, \dots, n\}$

- (B) The set \mathbb{N} of natural numbers.
- (C) The set \mathbb{Q} of rational numbers.
- (D) The interval (0,1).

8. If $S = \{2, 3, 4\}$ the number of elements in P(S), the power set of S, is:

(A) 3.

(B) 6.

3

(C) 8.

(D) 9.

9. Which of the following is *not* true?

- (A) If a > b and c > 0, then a + c > b + c.
- (B) If a > b and c < 0, then a + c < b + c.
- (C) If a > b and c > 0, then ac > bc.
- (D) If a > b and c < 0, then ac < bc.

10. If $a \in \mathbb{R}$ such that, $0 \le a < \varepsilon$ for every $\varepsilon > 0$ then, :

(A) a > 0.

(B) $a \neq 0$.

(C) a = 0.

(D) None of these.

11. Let $S = \{x \in \mathbb{R} : x < 2\}$. Then :

- (A) Neither sup S nor inf S exist.
- (B) Both sup S and inf S exist.
- (C) Sup S exists but less than 2.
- (D) Sup S equal to 2.

12. If $S = \left\{1 - \frac{(-1)^n}{n}, n \in \mathbb{N}\right\}$, then:

- (A) Sup S = 2, Inf S = 1/2.
- (B) $\sup S = 2, \inf S = 0.$
- (C) Sup S = 1, Inf S = 1/2.
- (D) Sup S = 1, Inf S = 0.

13. The binary representation of 3/8 is:

(A) 0. 01111111

(B) 0. 0101000

(C) 0. 10111111...

(D) 0.0101111

Turn over

			-	D 102	٠
14.	The rat	tional number represented by 7.31	41414	4 ——— is :	
	(A)	7245/990.	(B)	7249/990.	
	(C)	7241/990.	(D)	7243/990.	
15.	The six	th term of the Fibonacci sequence	is ——		
	(A)	5.	(B)	6.	
	(C)	8.	(D)	13.	
16.	Limit o	of the sequence $\left(\frac{3n+2}{2n+1}\right)$ is			
	(A)	3.	(B)	1/2.	
	(C)	2.	(D)	3/2.	
17.	The sm	nallest value of $K(\epsilon)$ corresponding	ıg to ε	$\varepsilon = .01$ for the sequence $\left(\frac{1}{n}\right)$ is	
	(A)	10.	(B)	50.	
	(C)	100.	(D)	101.	
18.	Which	of the following is false?			
	(A)	If (x_n) is a convergent sequence the	hen ($=$	$\left(x_n^2\right)$ is convergent.	
	(B)	If (x_n) is a convergent sequence, a	and x_n	$x_n \ge 0$ for every n , then $(\sqrt{x_n})$ is convergent.	
	(C)	If (x_n^2) is a convergent sequence	then ((x_n) is convergent.	
	(D)	If (x_n) is a convergent sequence the	hen ($\left(x_n^3\right)$ is convergent.	
19.	The lin	nit of the sequence $\left(1+\frac{1}{2n}\right)^n$ is:			
	(A)	1.	(B)	∞ .	
	(C)	e.	(D)	\sqrt{e} ·	
20.	The sec	quence $\left(4,-2,0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots \dots\right)$			

(B) Monotone increasing.

Ultimately Monotone decreasing. (D) Ultimately Monotone increasing.

(A) Monotone decreasing.