D 31	1615	Pages: 3)	Name	
			Reg. No	
THIRD SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2022				
Mathematics				
MAT 3B 03—CALCULUS AND ANALYTIC GEOMETRY				
(2017–2018 Admissions)				
Time:	: Three Hours		Maximum: 80 Marks	
		Part A		
(Objective Type. Answer all twelve questions.				
1.	1. Define natural logarithm function.			
2.	Define a sequence.			
3.	Define a non-decreasing sequence.			
4.	Find a formula for n th term of the sequence 1, 6, 11, 16, 21, ———.			
5.	Define $sinh(x)$.			
6.	Define parabola.			
7.	Fill in the blanks : The eccentricity of a parabola is $e = \frac{1}{2}$.			
8.	Write a parametrization of the circle $x^2 + y^2 = 4$.			
9.	$\lim_{n \to \infty} \sqrt[n]{n} =$			
	$n o \infty$			
10.	Fill in the blanks : If the point $P_0(r_0, \theta_0)$ n is the foot of the perpendicular from the origin to the			
	line L and $r \ge 0$, the equation of the line L in polar form is $r =$.			
	b			
11.	The polar equation $r = \frac{k}{1 + \cos \theta}$ represent	nts a conic whose eccent	cricity is ———.	
12.	12. Maclaurins series for the function e^z is ————.			
			$(12 \times 1 = 12 \text{ marks})$	
			Turn over	

2 **D 31615**

Part B

(Short Answer Type. Answer any nine questions).

13. Find
$$\int_{0}^{\ln 2} 4e^x \sinh x dx.$$

- 14. Find k if $e^{-2k} = 10$.
- 15. Show that e^x grows faster than x^2 as x tends to ∞ .
- 16. Show that $\lim_{n\to\infty} \frac{1}{n^2} = 0$.
- 17. If the sequence $\{a_n\}$ is recursively defined as $a_n = na_{n-1}$ and $a_1 = 1$, find a_6 .
- 18. Find $\lim_{x \to \infty} x^{\frac{1}{x}}$.
- 19. Find the eccentricity of the hyperbola $x^2 y^2 = 1$.
- 20. Find the focus and directrix of the parabola $x^2 = 100 y$.
- 21. Determine the conic section from the equation $xy y^2 4y + 1 = 0$.
- 22. Replace the polar equation $r^2 = 4r \cos \theta$ by equivalent Cartesian equation.
- 23. Graph the sets of points whose polar co-ordinates satisfy the conditions $-3 \le r \le 3$ and $\theta = \frac{\pi}{2}$.
- 24. Find the equation for the ellipse with eccentricity 1/2 and directrix x = 1.

 $(9 \times 2 = 18 \text{ marks})$

Part C

(Short Essay Type. Answer any six questions).

- 25. Show that the sequence $\left\{ \left(\frac{n+1}{n-1} \right)^n \right\}$ converge and find the limit.
- 26. Find a formula for the n^{th} partial sum of the series $\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \cdots + \frac{1}{(n+1)(n+2)} + \cdots$ and use it to find the series sum if it converges.

D 31615

27. Show that
$$\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots, -1 < x < 1.$$

- 28. If $\sum a_n$ converges, show that $\lim a_n = 0$.
- 29. Find the surface area generated by revolving the curves $x = \cos t$, $y = 2 + \sin t$, $0 \le t \le 2\pi$ about x-axis.

3

- 30. Find the sum of the series : $\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$
- 31. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges or diverges.
- 32. Check whether $\sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$ converges or diverges.
- 33. Find the tangent to the right-handed hyperbola branch $x = \sec t$, $y = \tan t$, $-\pi/2 < t < \pi/2$.

 $(6 \times 5 = 30 \text{ marks})$

Part D

(Essay Type. Answer any two questions).

- 34. (a) Graph the curve $r^2 = \sin 2\theta$.
 - (b) Find the length of the astroid $x = \cos 3t$, $y = \sin 3t$, $t \in [0, 2\pi]$.
- 35. (a) Show that $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ converges.
 - (b) Show that $\cosh^{-1} x = \ln(x + \sqrt{x^2 1}), x \ge 1.$
- 36. Find the area inside the smaller loop of the limacon $r = s \cos \theta + 1$.

 $(2 \times 10 = 20 \text{ marks})$