D 30560	(Pages: 3)	Name
		Rog No

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2019 Admissions only)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

All questions can be answered.

Each question carries 2 marks. Ceiling is 25.

- 1. Verify whether the set \mathbb{Z} of all integers is denumerable?
- 2. State Cantor's theorem?
- 3. Let $a, b, c \in \mathbb{R}$. Then if a > b and c > 0, then show that ac > bc.
- 4. Determine the set of all real numbers x such that $2x + 3 \le 6$.
- 5. Prove that if x is a rational number and y is an irrational number, then x + y is an irrational number?
- 6. State the completeness property of \mathbb{R} .
- 7. Find the Infimum and Supremum if it exists of $A = \{x \in \mathbb{R} : 2x + 5 > 0\}$.
- 8. State Archimedean property?
- 9. A bounded sequence is always convergent. Prove or disprove?
- 10. Test the convergence of $((-1)^n)$.
- 11. Find the reciprocal of z = 2 3i.
- 12. What can be said about the complex number z if $z = \overline{z}$.

Turn over

D 30560

- 13. Find the values of the complex exponential function e^z at $z = 2 + \pi i$.
- 14. Is $\left(\left(1+\left(-1\right)^n\right)\right)$ a Cauchy sequence?
- 15. Express 1+i in polar form.

Section B

 $\mathbf{2}$

All questions can be answered.

Each question carries 5 marks. Ceiling is 35.

- 16. Show that the set of rational numbers is denumerable?
- 17. If $a, b \in \mathbb{R}$, then prove that $||a| |b|| \le |a b|$.
- 18. State and prove Bernoulli's inequality?
- 19. State and prove density theorem?
- 20. Let S be a non empty bounded set in \mathbb{R} . If b < 0 and $bS = \{bs : s \in S\}$ then prove that $\ln f(bS) = b \operatorname{Sup} S$.
- 21. Show that every convergent sequence is bounded.
- 22. Find the image of the vertical line z = 1 under the complex mapping $W = z^2$.
- 23. Find the three cube roots of Z = i.

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. (a) Let $a, b, c \in \mathbb{R}$. Then if ab > 0 then show that either a > 0 and b > 0 or a < 0 and b < 0.
 - (b) Let $a, b, c \in \mathbb{R}$. Then if ab < 0 then show that either a > 0 and b < 0 or a < 0 and b > 0.
 - (c) If 1 < C, then show that $1 < C < C^2$.

- 25. (a) Prove that a Cauchy sequence of real numbers is bounded.
 - (b) If C > 0 then show that $\lim_{n \to \infty} \left(\frac{1}{n} \right) = 1$.
- 26. (a) The polynomial equation $x^3 7x + 2 = 0$ has a solution between 0 and 1. Use an approximate contractive sequence to calculate the solution correct to 4 decimal places

3

- (b) Show that $\lim \left(n^{\frac{1}{n}}\right) = 1$.
- 27. (a) Find the product and quotient of the two complex numbers $z_1 = i$ and $z_2 = -\sqrt{3} i$.
 - (b) Find the set of all points in the complex plane that satisfy $\mid z \mid = \mid z i \mid$.
 - (c) Find the image of the horizontal line y = 3 under the mapping $f(z) = \overline{z}$.

 $(2 \times 10 = 20 \text{ marks})$