D 50668 (Pages : 4) Name.....

Reg. No.....

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 08—LINEAR PROGRAMMING

(2020 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Ceiling is 20.

- 1. Define polyhedral convex set. Give an example of a polyhedral convex set in \mathbb{R}^2 .
- 2. Convert the following linear programming problem into canonical form:

Maximize
$$f(x, y) = -2y - x$$
 subject to
$$2x - y \ge -1$$
$$3y - x \le 8$$
$$x, y \ge 0.$$

- 3. Define canonical slack maximization linear programming problem.
- 4. Pivot on 5 in the canonical maximimum tableau given below:

- 5. Define negative transpose.
- 6. If a canonical maximization linear programming problem is unbounded, prove that the dual canonical minimization linear programming problem is infeasible.

Turn over

D 50668

- 7. Explain the following terms:
 - a) Two person zero sum game;
 - b) Pay off matrix; and
 - c) Domination in matrix game.
- 8. State Von Neumann minimax theorem.
- 9. Let $x, y \in \mathbb{R}$ and consider the matrix game given below :

$$I\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}.$$

Determine a necessary and sufficient condition for the matrix game above to reduce by domination to a single entry.

2

- 10. Distinguish between balanced and unbalanced transportation problem.
- 11. Explain briefly the north west corner method to obtain the initial basic feasible solution in transportation problem.
- 12. Define cycle in a tableau of a bounded transportation problem and give an example.

Section B

Answer any number of questions.

Each question carries 5 marks.

Ceiling is 30.

13. Using graphical method to solve the following linear programming problem:

Maximize
$$f(x, y) = x + y$$
 subject to

$$x - y \le 3$$
$$2x + y \le 12$$

$$0 \le x \le 4$$

$$0 \le y \le 6$$
.

14. Write the simplex algorithm for maximum tableaus.

D 50668

15. Solve the noncanonical linear programming problem given below:

Maximize
$$f(x, y, z) = 2x + y - 2z$$
 subject to
$$x + y + z \le 1$$

$$y + 4z > 2$$

$$x, y, z \ge 0.$$

16. Prove that a pair of feasible solutions of dual canonical linear programming problems exhibit complementary slackness if and only if they are optimal solutions.

3

17. Solve the dual canonical linear programming problem given below:

18. Find the von Neumann value and the optimal strategy for each player in the matrix game given below:

19. Solve the following transportation problem:

40	50	20	
1	2	9	10
9	4	7	60
2	1	2	40

Turn over

D 50668

Section C

Answer any **one** question. The question carries 10 marks.

20. Apply simplex algorithm to solve the following maximum tableau:

x_1	x_2	- 1		
- 1	- 2	- 3	=	$-t_1$
1	1	3	=	$-t_2$
1	1	2	=	$-t_{3}$
- 2	4	0	=	f

21. Write the Hungarian algorithm. Using this algorithm solve the following assignment problem;

4	6	5	10
10	9	7	13
7	11	8	13
12	13	12	17

 $(1 \times 10 = 10 \text{ marks})$