FIFTH SEMESTER U.G. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS—UG)

Mathematics

MTS 5B 05—THEORY OF EQUATIONS AND ABSTRACT ALGEBRA

(2019 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer at least ten questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Show that $x^5 3x^4 + x^2 2x 3$ is divisible by x 3.
- 2. Factorize into linear factors the polynomial $x^4 1$.
- 3. Write a cubic equation with roots 1, 1+i, 1-i.
- 4. State Identity theorem.
- 5. How many real roots has the equation $x^4 4ax + b = 0$.
- 6. Make addition and multiplication tables for \mathbb{Z}_2 .
- 7. Check whether the relation on \mathbb{R} defined by $a \sim b$ if $a b \in \mathbb{Q}$ is an equivalence relation.
- 8. Consider the permutations $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$. Compute $\sigma \tau$ and $\tau \sigma$.
- 9. Let G be a group and $a, b \in G$. Show that $(ab)^{-1} = b^{-1}a^{-1}$.
- 10. Write a subgroup of $(\mathbb{Z}, +)$.

Turn over

2 **D 10666**

- 11. Check whether $\mathbb{Z} \times \mathbb{Z}$ is cyclic.
- 12. Find order of the permutation (1,3)(2,6)(1,4,5).
- 13. Let $\Phi: G_1 \to G_2$ be a group homomorphism. Show that $\Phi(e) = e'$ where e and e' are identity elements of G_1 and G_2 respectively.
- 14. Define a Ring.
- 15. Give example of an integral domain.

 $(10 \times 3 = 30 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Solve $x^5 3x^4 + 4x^3 4x + 4$ having the root 1 + i.
- 17. Solve the cubic equation $2x^3 x^2 18x + 9 = 0$ whose roots are a, b, c with a + b = 0.
- 18. Find an upper limit of the positive roots of the equation $2x^5 7x^4 5x^3 + 6x^2 + 3x 10 = 0$.
- 19. Prove that set of all even permutations of S_n is a subgroup of S_n .
- 20. Define * on \mathbb{Z} by a * b = a b. Check whether $(\mathbb{Z}, *)$ is a group.
- 21. Check whether \mathbb{Z}_n is cyclic.
- 22. Draw the subgroup diagram of \mathbb{Z}_{36} .
- 23. Let G_1 and G_2 be groups and let $\Phi: G_1 \to G_2$ be a function such that $\Phi(a b) = \Phi(a) \Phi(b)$ for all $a, b \in G$. Prove that Φ is 1-1 if and only if $\Phi(x) = e$ implies that x = e for all $x \in G_1$.

 $(5 \times 6 = 30 \text{ marks})$

D 10666

Section C

3

Answer any **two** questions. Each question carries 10 marks.

- 24. Examine whether $x^4 x^3 x^2 + 19x 42 = 0$ has integral roots or not.
- 25. Solve $x^3 6x 6 = 0$ by Cardan's method.
- 26. Let G be a cyclic group. Show that:
 - (a) If G is infinite then $G \cong \mathbb{Z}$.
 - (b) If |G| = n, then $G \cong \mathbb{Z}_n$.
- 27. State and prove Lagrange's theorem.

 $(2 \times 10 = 20 \text{ marks})$