C 43189	(Pages : 4)	Name
		Reg. No

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

Mathematics

MTS 2B 02—CALCULUS OF SINGLE VARIABLE—1

(2019—2022 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Maximum 25 marks.

- 1. Sketch the graph of the absolute value function f(x) = |x|.
- 2. By translating the graph of $y = x^2$, sketch the graphs of $y = x^2 + 2$.
- 3. Show that $\lim_{x\to 2} [x]$ does not exist.
- 4. State The Squeeze Theorem.
- 5. Show that zero is a critical number of each of the functions $f(x) = x^3$ and $g(x) = x^{1/3}$ but that neither function has a relative extremum at 0.
- 6. State Rolle's theorem and Mean Value Theorem.
- 7. Show that the function $f(x) = x^3 + x + 1$ has exactly one zero in the interval [-2, 0].
- 8. Determine the intervals where the graph of $f(x) = x^{\frac{2}{3}}$ is concave upward and where it is concave downward.
- 9. Find (i) $\int 2x^3 dx$; and (ii) $\int (2x + 3\sin x) dx$.

Turn over

C 43189

10. Verify the mean value theorem and find c for f(x) = x(x-1)(x-2) for a = 0, $b = \frac{1}{2}$.

2

- 11. Evaluate $\frac{d}{dx} \int_0^x \frac{1}{2+t^4} dt$.
- 12. Using Riemann sum show that $\int_0^b x dx = \frac{b^2}{2}$.
- 13. Find the area of the region bounded by the graphs of $y = 2 x^2$ and y = -x.
- 14. Use differentials to obtain an approximation of the arc length of the graph of $y = 2x^2 + x$ from P(1,3) to Q(1.1,3.52).
- 15. Find the area of the surface obtained by revolving the graph of $x = y^3$ on the interval [0,1] about the *y*-axis.

Section B

Answer any number of questions.

Each question carries 5 marks.

Maximum 35 marks.

- 16. Show that the function f(x) = |x| is differentiable everywhere except at 0.
- 17. Suppose that the total cost in dollars incurred per week by the Polaraire Corporation in manufacturing x refrigerators is given by the total cost function

$$C(x) = -0.2x^2 + 200x + 9000$$
 $0 \le x \le 400$.

- (i) What is the cost incurred in manufacturing the 201st refrigerator?
- (ii) Find the rate of change of C with respect to x when x = 200.
- 18. Find the points of inflection of $f(x) = (x-1)^{1/3}$.
- 19. Find $\lim_{x \to -\infty} \frac{x^2 + 1}{x 2}$.

C 43189

20. If
$$y = \int_0^{x^3} \cos t^2 dt$$
, what is $\frac{dy}{dx}$?

21. Evaluate
$$\int_{-2}^{2} \frac{\sin x}{\sqrt{1+x^2}} dx.$$

22. Find the volume of the solid obtained by revolving the region bounded by the graphs of $y = x^3$, y = 8 and x = 0 about the *y*-axis.

3

23. Find the center of mass of a system comprising three particles with masses 2, 3. and 5 slugs, located at the points (-2,2),(4,6) and (2,-3), respectively. (Assume that all distances are measured in feet.)

Section C

Answer any **two** questions.

Each question carries 10 marks.

Maximum 20 marks.

24. (a) The total cost incurred in operating an oil tanker on an 800-mi run, traveling at an average speed of v mph. is estimated to be

$$C(v) = \frac{10,00,000}{v} + 200v^2$$

dollars. Find the approximate change in the total operating cost if the average speed is increased from 10 mph to 10.5 mph.

(b) Prove that
$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$
.

- 25. (a) Sketch the graph of the function $f(x) = \frac{1}{1 + \sin x}$.
 - (b) Find the vertical asymptotes of the graph of $f(x) = \tan x$.

Turn over

1

C 43189

- 26. (a) Using Riemann sum evaluate $\int_{-1}^{3} (4-x^2) dx$.
 - (b) Using the property of definite integral estimate the integral $\int_{1}^{3} \sqrt{3+x^2} \ dx$.
- 27. Find the area of the region bounded by the graphs of $x = y^2$ and y = x 2.
 - (a) With respect to x; and
 - (b) With respect to *y*.

 $(2 \times 10 = 20 \text{ marks})$