FIFTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MAT 5B 08—DIFFERENTIAL EQUATIONS

(2018 Admissions)

Time: Three Hours

Maximum: 80 Marks

Section A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Solve the initial value problem dy/dt = -y + 5, $y(0) = y_0$.
- 2. Verify that $y = e^t$ is a solution of the differential equation y'' y = 0.
- 3. Find the order of the differential equation y'' + 7y' + 5y = 0.
- 4. Show that (2x+3)+(2y-2)y'=0 is an exact equation.
- 5. Find the Wronskian of the functions $y_1(t) = \cos t$, $y_2(t) = \sin t$.
- 6. Write the characteristic equation of the differential equation y'' + y' + y = 0.
- 7. Transform the equation u'' + 0.125u' + u = 0 in to a system of first order equations.
- 8. Find $\mathcal{L}(t^2+1)$.
- 9. Define the Heaviside function.
- 10. Find $\mathcal{L}^{-1}\left(\frac{s}{s^2+4}\right)$.
- 11. Find the fundamental period of the function $f(x) = \sin 3x$.
- 12. Show that $f(x) = x^2 \cos 4x$ is an even function.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Section B

Answer any **ten** out of fourteen questions. Each question carries 4 marks.

- 13. Find the temperature $u\left(x,t\right)$ at any time in a metal rod 50 cm long, insulated on the sides, which initially has a uniform temperature of 20° throughout and whose ends are maintained at 0° for all time $t \ge 0$.
- 14. Show that the wave equation $a^2u_{xx} = u_{tt}$ can be reduced to the form $u_{\zeta\eta} = 0$ by the change of variables $\zeta = x at$, $\eta = x + at$.
- 15. Determine the co-efficients in the Fourier Series of f(x) where $f(x) = \begin{cases} -x, & -2 \le x < 0 \\ x, & 0 \le x < 2 \end{cases}$ and f(x+4) = f(x).
- 16. Using Convolution Integral, find the inverse transform of $H(s) = \frac{s}{s^2(s^2 + a^2)}$.
- 17. Define the unit impulse function δ and show that $\mathcal{L}(\delta(t)) = 1$.
- 18. Consider the function $f(t) = \begin{cases} 2, & 0 \le t < 4, \\ 5, & 4 \le t < 7, \\ -1, & 7 \le t < 9, \\ 1, & t \ge 9. \end{cases}$

Express $f\left(t\right)$ in terms of $u_{c}\left(t\right)$.

- 19. Prove the following: If $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$, are solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on the interval $\alpha < t < \beta$, then in this interval $\mathbf{W}\left[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}\right]$ either is identically zero or else never vanishes.
- 20. Given that $y_1(t) = t^{-1}$ is a solution of $2t^2y'' + 3ty' y = 0$, find a fundamental set of solutions.
- 21. Find a general solution of the initial value problem y'' + y' + 9.25y = 0, y(0) = 2, y'(0) = 8.

- 22. State The Existence and Uniqueness Theorem.
- 23. Solve the differential equation $(y \cos x + 2xe^y) + (\sin x + x^2e^y 1)y' = 0$.
- 24. Solve the initial value problem $y' = y^2$, y(0) = 1 and determine the interval in which the solution exists.
- 25. Show that the equation $y'' = \frac{x^2}{1 y^2}$ is separable, and then find an equation for its integral curves.
- 26. Solve $\frac{dy}{dx} = \sin(x + y)$.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** out of nine questions. Each question carries 7 marks each.

- 27. (a) Let $y = y_1(t)$ is a solution of y' + p(t)y = 0 and let $y = y_2(t)$ be a solution of y' + p(t)y = g(t). Show that $y(t) = y_1(t) + y_2(t)$ is also a solution of y' + p(t)y = g(t).
 - (b) Find the value of *b* for which he given equation $(xy^2 + bx^2 y) dx + (x + y) x^2 dy = 0$ is exact.
- 28. Find an integrating factor for the equation $(3xy + y^2) + (x^2 + xy)y' = 0$ and hence solve it.
- 29. Find a particular solution of $y'' 3y' 4y = 3e^{2t} + 2\sin t$.
- 30. Suppose that a mass of weighing 10 lb stretched in a spring 2 in. If the mass is displaced an additional 2 in. and is then set in motion with an initial upward velocity of $1 \, ft/s$, determine the position of the mass at an later time. Also determine the period, amplitude and phase of the potion.
- 31. If the function f defined by $f(t) = \begin{cases} \sin t, 0 \le t < \pi/4, \\ \sin t + \cos(t \pi/4), t \ge \pi/4 \end{cases}$

Find $\mathcal{L}(t)$.

- 32. (a) Show that if c is a positive constant, then $\mathcal{L}\left(ct\right) = \frac{1}{c}\operatorname{F}\left(s/a\right), s > ca$.
 - (b) Show that if a and b are constants with a > 0, then $\mathcal{L}^{-1} F\left[\left(as + b\right)\right] = \frac{1}{a} e^{-bt/a} f\left(\frac{t}{a}\right)$.

4

- 33. State and prove The Convolution Integral theorem for Laplace Transform.
- 34. Find a Fourier sine series for $f(x) = \begin{cases} x, 0 < x < \pi/2 \\ \pi x, \pi/2 < x < \pi \end{cases}$.
- 35. Show that $\int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx = \begin{cases} 0, & m \neq n \\ L, & m = n \end{cases}$

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** questions.

Each question carries 13 marks each.

36. (a) Consider a vibrating string of length L = 30 that satisfy the wave equation $4u_{xx} = u_{tt}$, 0 < x < 30, t > 0. Assume that the ends of the string are fixed and that the string is set in motion with no initial velocity from the initial position

$$u(x,0) = f(x) = \begin{cases} x/10, 0 \le x \le 10, \\ (30-x)/20, 10 < x \le 30. \end{cases}$$

Find the displacement u(x,t) of the string and describe its motion through one period.

(b) Find the Fourier series for the function $f(x) = \begin{cases} x, & 0 < x < \pi \\ 2\pi - x, & \pi < x < 2\pi \end{cases}$ and hence show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

- 37. (a) Using Laplace transform, find the solution of the initial value problem $y'' + y = \sin 2t$, y(0) = 2, y'(0) = 1.
 - (b) Find the inverse Laplace Transform of $\frac{1}{s(2s^2+s+2)}$.
- 38. (a) State and Prove Abel's Theorem.
 - (b) Using the Method of Variation of Parameters, solve y'' + 4y = 3csct.

 $(2 \times 13 = 26 \text{ marks})$