D 110209	(Pages: 3)	Name
		Reg No

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2020 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Maximum 25 marks.

- 1. Prove that there does not exist a rational number r such that $r^2 = 2$.
- 2. Determine the set A of $x \in \mathbb{R}$ such that $|2x+3| \le 7$.
- 3. If $a, b \in \mathbb{R}$, prove that $|a+b| \le |a| + |b|$.
- 4. State the supremum property of \mathbb{R} .
- 5. If $S = \left\{ \frac{1}{n} \frac{1}{m} : n, m \in \mathbb{N} \right\}$, find inf S and sup S.
- 6. State and prove Archimedean property.
- 7. Let x and y be real numbers with x < y, prove there exists an irrational number z such that x < z < y.
- 8. State and prove squeeze theorem.
- 9. If a sequence (x_n) of real numbers converges to a real number x, prove that any subsequence (x_{nk}) of (x_n) also converges to x.

Turn over

2 **D** 110209

- 10. Prove that every Cauchy sequence of real numbers is bounded.
- 11. Let (x_n) and (y_n) be two sequence of real numbers and suppose that $x_n \le y_n$ for all $n \in \mathbb{N}$. If $\lim x_n = +\infty$, prove that $\lim y_n = +\infty$.
- 12. Prove that the intersection of any finite collection of open sets in \mathbb{R} is open.
- 13. Compute $(1+\sqrt{3}i)^9$.
- 14. Find the real and imaginary parts of $f(z) = z^2 (2+i)z$ as a function of x and y.
- 15. Show that the complex function f(z) = z + 3i is a one to one on the entire complex plane and find a formula for its inverse function.

Section B

Answer any number of questions.

Each question carries 5 marks.

Maximum 35 marks.

- 16. State and prove Cantor's theorem.
- 17. Let a and b be positive real numbers, prove that $\sqrt{ab} \le \frac{a+b}{2}$ and the equality occurs if and only if a=b.
- 18. State and prove density theorem.
- 19. Prove that unit interval [0, 1] is not countable.
- 20. State and prove monotone convergence theorem.
- 21. Let $F \subseteq \mathbb{R}$; prove that the following are equivalent:
 - (a) F is a closed subset of \mathbb{R} ;
 - (b) If $X = (x_n)$ is any convergent sequence of element in F, then $\lim X$ belongs to F.
- 22. Find an upper bound for $\left| \frac{-1}{z^4 5z + 1} \right|$ if |z| = 2.

D 110209

23. For any two complex numbers, prove that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|)^2$.

Section C

Answer any **two** questions.

Each question carries 10 marks.

- 24. a) If A_m is a countable set for each $m \in \mathbb{N}$, prove that $A = \bigcup_{m=1}^{\infty} A_m$ is countable.
 - b) State and prove Bernoulli's inequality.
- 25. a) State and prove monotone convergence theorem.
 - b) Let $s_1 = 1$ and $s_{n+1} = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right)$ for $n \in \mathbb{N}$. Prove that (s_n) converges to \sqrt{a} .
- 26. a) Prove that every contractive sequence is a Cauchy sequence.
 - b) Let $f_1 = 1$, $f_2 = 1$ and $f_{n+1} = f_n + f_{n-1}$. Define $x_n = \frac{f_n}{f_{n+1}}$. Prove that $\lim x_n = \frac{-1 + \sqrt{5}}{2}$.
- 27. Find a complex linear function that maps the equilateral triangle with vertices 1+i, 2+i and $\frac{3}{2}+\left(1+\frac{1}{2}\sqrt{3}\right)i$ onto the equilateral triangle with the vertices $i, \sqrt{3}+2i$ and 3i.

 $(2 \times 10 = 20 \text{ marks})$