C 20209	(Pages : 4)	Name
		Reg. No

SIXTH SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, MARCH 2022

Mathematics

MAT 6B 11—NUMERICAL METHODS

(2014 to 2018 Admissions)

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all questions.
Each question carries 1 mark.

- 1. What is the minimum number of iterations required in bisection method to achieve an accuracy \in ?
- 2. State the condition for convergence of Newton-Raphson method.
- 3. Define the central difference operator.
- 4. Evaluate $\Delta(x^2 + \sin x)$, interval of differencing being h.
- 5. State Newton's backward difference interpolation formula.
- 6. Show that the Lagrange interpolating polynomial is unique.
- 7. Given $f(x) = \frac{1}{x^2}$, find the divided differences [a, b] and [a, b, c].
- 8. Given a set of *n*-values of (x, y), what is the formula for computing $\left[\frac{d^2y}{dx^2}\right]_{x_n}$.
- 9. State general formula for numerical integration.
- 10. What is complete pivoting?
- 11. Write Runge-Kutta formula to fourth order to solve $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
- 12. Write Adams-Moulton corrector formula.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any **ten** questions. Each question carries 4 marks.

13. Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the methods of Regula-Falsi to determine it.

Turn over

C 20209

14. Prove that (i) $\delta = \Delta E^{-1/2}$; (ii) $E = e^{hD}$ where E is the shift operator and D is the differential operator.

2

- $15. \quad \text{Given } \log_{10} 100 = 2, \log_{10} 101 = 2.0043, \log_{10} 103 = 2.0128, \log_{10} 104 = 2.0170, \text{ find } \log_{10} 102.$
- 16. The function $y = \sin x$ is tabulated below:

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$y = \sin x$	0	0.70711	1.0

Using Lagrange's interpolation formula, find the value of $\sin\left(\frac{\pi}{6}\right)$.

- 17. Prove that the *n*th divided difference of a polynomial of *n*th degree are constant.
- 18. Given the set of tabulated points (0, 2), (1, 3), (2, 12) and (15, 3587) satisfying the function y = f(x), compute f(4) using Newton's divided difference formula.
- 19. Using Simpson's $\frac{3}{8}$ -rule with $h = \frac{\pi}{6}$, evaluate the integral $\int_{0}^{\pi/2} \sin x \, dx$.
- 20. Solve the system 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16 by the Gauss-Jordan method.
- 21. Decompose the matrix $\begin{bmatrix} 1 & 3 & 8 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ in the form LU where L is a unit lower triangular matrix

and U is a upper triangular matrix.

22. Find the smallest eigenvalue and the corresponding eigenvector of the matrix

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- 23. Use Picard's method to obtain y(0.1) of the problem defined by $\frac{dy}{dx} = x + yx^4$, y(0) = 3.
- 24. Explain briefly the method of iteration to compute a real root of the equation f(x) = 0, stating the condition of convergence of the sequence of approximations.
- 25. A rod is rotating in a plane about one of its ends. The angle θ (in radians) at different times t (seconds) are given below:

t	0	0.2	0.4	0.6	0.8	1.0
θ	0.0	0.15	0.50	1.15	2.0	3.20

Find its angular acceleration when t = 0.6 seconds.

3 C 20209

26. Solve the tridiagonal system of equations
$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 2 \\ 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 3 \end{bmatrix}.$$

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** questions. Each question carries 7 marks.

- 27. Using the secant method, find a real root of the equation $f(x) = xe^x 1 = 0$.
- 28. Using bisection method find the positive root, between 0 and 1, of the equation $x = e^{-x}$ to a tolerance of 0.05 %.
- 29. Using Newton's forward interpolation formula, find y at x = 8 from the following table :

x	0	5	10	15	20	25
у	7	11	14	18	24	32

30. From the following table, find the value of $e^{1.17}$ using Gauss' forward formula:

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
e^x	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

31. Given the table of values

x	2	3	4	5
x^3	8	27	64	125

Use the method of successive approximations to find x when $x^3 = 10$.

32. Find the first and second derivatives of the function tabulated below at the point x = 2.2:

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

- 33. Use Gauss elimination to find the inverse of the matrix $\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & 2 & 2 \end{bmatrix}$.
- 34. If $\frac{dy}{dx} = \frac{1}{x^2 + y}$ with y(4) = 4 compute the values of y(4.1) and y(4.2) by Taylor's series method.

Turn over

C 20209

35. A curve is given by the points of the table given below:

					2.0				
у	23	19	14	11	12.5	16	19	20	20

Apply Simpson's rule to find the area bounded by the curve, the *x*-axis and the extreme ordinates.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 13 marks.

- 36. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using:
 - (a) Trapezoidal rule taking h = 0.25.
 - (b) Simpson's $\frac{1}{3}$ -rule taking h = 0.125.
- 37. Solve the system 10x + 2y + z = 9; 2x + 20y 2z = -44; -2x + 3y + 10z = 22 using both Jacobi and Gauss-Seidel method.
- 38. (a) Use Runge-Kutta fourth order formula to find y(0.2) and y(0.4) given that $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}, y(0) = 1.$
 - (b) Solve the initial value problem $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 with h = 0.2 on the interval [0, 0.6] using Milne's method.

 $(2 \times 13 = 26 \text{ marks})$