SIXTH SEMESTER UG (CBCSS-UG) DEGREE EXAMINATION, MARCH 2024

Mathematics

MTS 6B 11—COMPLEX ANALYSIS

(2020 Admissions onwards)

Time: Two Hours and a Half

Maximum Marks: 80

Section A

Answer any number of questions.

Each question carries 2 marks. Maximum marks 25.

- 1. Show that $f(z) = \overline{z}$ is nowhere differentiable.
- 2. Verify Cauchy-Riemann equations for $f(z) = z^2$.
- 3. Write the Cauchy-Riemann equations in polar co-ordinates.
- 4. Define harmonic function and harmonic conjugate function.
- 5. Solve $e^w = -2$.
- 6. Express $\cos (2-4i)$ in the form a + ib.
- 7. Evaluate $\int ydx + xdy$ on the curve $y = x^2$ from (0, 0) to (1, 1).
- 8. Evaluate $\oint zdz$ over the first quadrant of the circle |z| = 1 from z = i to z = 1.
- 9. Prove that $\int_{C} f(z)dz = 0$ for $f(z) = \frac{z^2}{z-3}$ where C is the unit circle |z| = 1.
- 10. Evaluate $\oint_C \frac{z+1}{z^4+2iz^3} dz$ where C is the circle |z| = 1.
- 11. Define (a) Power series; (b) Circle of convergence.
- 12. Write the Maclaurin series expansion for $\sin z$ and $\cos z$.
- 13. Expand $f(z) = e^{\frac{3}{z}}$ in a Laurent series valid for $0 < |z| < \infty$.
- 14. Find zeroes of $f(z) = \frac{z-2}{z^2} \sin \frac{1}{z-1}$.
- 15. Find the residue of $f(z) = \frac{z}{z^2 + 1}$ at its poles.

Turn over

D 100613

Section B

Answer any number of questions.
Each question carries 5 marks. Maximum marks 35.

- 16. Verify the Cauchy Riemann equations for $f(x+iy) = \frac{x-iy}{x^2+y^2}$.
- 17. If f(z) = u + iv then show that $|f'(z)|^2 = u_x^2 + v_x^2 = u_y^2 + u_y^2$.
- 18. Find the image of the annulus $2 \le |z| \le 4$ under the mapping $w = \operatorname{Ln} z$.
- 19. Find the principal value of $(-3)^{\frac{i}{\pi}}$.
- 20. Using Cauchy-Goursat theorem, evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$ where C is the circle |z-2|=2.
- 21. Find $\oint_C \frac{z^2 4z + 4}{z + i} dz$ where C is the circle |z| = 2.
- 22. Prove that the sequence $\left\{\frac{3+ni}{n+2ni}\right\}$ converges to $\frac{2}{5}+\frac{1}{5}i$.
- 23. Find the residue of $f(z) = \tan z$ at $z = \frac{\pi}{2}$.

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum marks 20.

- 24. Verify that the function $u(x, y) = x^3 3xy^2 5y$ is harmonic in the entire complex plane and find the harmonic conjugate function.
- 25. State and prove (a) Liouville's theorem; (b) Morerea's thereom.
- 26. State Cauchy's residue theorem, and using this show that $\int_{C} \frac{dz}{z \sin z} = 0$, where C is the unit circle about the origin described in the positive sense.
- 27. Show that $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta} \frac{2\pi}{\sqrt{3}}.$

 $(2 \times 10 = 20 \text{ marks})$