FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2020 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Maximum 25 marks.

- 1. State Cantor's theorem.
- 2. Prove that there does not exist a rational number r such that $r^2 = 3$.
- 3. If $a, b \in \mathbb{R}$, prove that $||a| |b|| \le |a b|$.
- 4. Prove that an upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon > 0$ there exist an $s_{\epsilon} \in S$ such that $u \epsilon < s_{\epsilon}$.
- 5. State and prove Archimedean property.
- 6. Prove that a sequence in \mathbb{R} can have at most one limit point.
- 7. Prove that $\lim \left(\frac{\sin n}{n}\right) = 0$.
- 8. Let $e_n = \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N}$. Prove that $2 < e_n < 3$ for all $n \in \mathbb{N}$.
- 9. Give an example of an unbounded sequence that has a convergent subsequence.
- 10. If (x_n) and (y_n) are Cauchy sequences, prove that $(x_n + y_n)$ is a Cauchy sequence.

Turn over

D 50666

- 11. Prove that the sequence $\left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right)$ diverges.
- 12. Define Cantor set.
- 13. Describe the set of points z in the complex plane that satisfy the equation |z-2| = Re(z).

2

- 14. Find the image of the line segment from 1 to *i* under the complex mapping $\omega = \overline{iz}$.
- 15. Find the image of the rectangle with vertices -1+i, 1+i, 1+2i and -1+2i under the linear mapping f(z) = 4iz + 2 + 3i.

Section B

Answer any number of questions.

Each question carries 5 marks.

Maximum 35 marks.

- 16. Prove that the following statements are equivalent:
 - a) S is a countable set; and
 - b) There exists a surjection of \mathbb{N} onto S.
 - c) There exists an injection of S onto \mathbb{N} .
- 17. Determine the set B = $\{x \in \mathbb{R} : |x-1| < |x|\}$.
- 18. Prove that \mathbb{R} of real numbers is not countable.
- 19. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converge to x and y respectively. Prove that $X \cdot Y$ converges to xy.
- 20. State and prove Cauchy convergence criterion for sequences.
- 21. Prove that
 - a) the union of an arbitrary collection of open subsets in $\mathbb R$ is open.
 - b) the intersection of any finite collection of open sets in \mathbb{R} is open.

3 **D 50666**

- 22. Determine whether the points $z_1 = -2 8i$, $z_2 = 3i$, $z_3 = -6 5i$ are the vertices of a right triangle.
- 23. Let S = $\{z \in \mathbb{C} : 1 \le |z-1-i| < 2\}$. Determine whether the set S is :
 - a) Open;
 - b) Closed;
 - c) Domain;
 - d) Bounded; and
 - e) Connected.

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. (a) Let a and b be positive real numbers, prove that $\sqrt{ab} \le \frac{1}{2}(a+b)$ and the equality holds if and only if a=b.
 - (b) State and prove Bernoulli's inequality.
- 25. Prove that there exits a positive real number x such that $x^2 = 2$.
- 26. (a) Prove that every contractive sequence is a convergent sequence.
 - (b) The polygonal equation $x^3 7x + 2 = 0$ has a root r with 0 < r < 1. Use an appropriate contractive sequence to calculate r within 10^{-5} .
- 27. (a) Solve the simultaneous equations |z| = 2 and |z-2| = 2.
 - (b) Find the image of the triangle with vertices 0, 1+i and 1-i under the mapping $\omega = z^2$.

 $(2 \times 10 = 20 \text{ marks})$