FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 09—INTRODUCTION TO GEOMETRY AND THEORY OF EQUATIONS

(2020 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Not more than 20 marks can be earned from this unit. Each question carries 2 marks.

- 1. State Reflection Property of the Parabola.
- 2. Determine the equation of the tangent to the ellipse with parametric equations

$$x = 3\cos t, y = \sin t$$

at the point with parameter value $t = \pi/4$.

- 3. Prove that Euclidean-congruence is a symmetric relation.
- 4. Give the inverse of the affine transformation t(x) = Ax + b.
- 5. Find the quotient and remainder obtained when $f(x) = 2x^7 3x^6 + x^5 3x^4 + 5x^3 4x^2 + 2x 1$ is divided by $g(x) = 2x^3 3x^2 + x 1$.
- 6. Calculate the values of the polynomial $4x^3 7x^2 + 5x + 3$ and their derivatives for the value of x = -2.
- 7. State the Fundamental theorem of Algebra.
- 8. Verify that *i* is a zero of $f(x) = x^3 + 2x i$
- 9. How many real roots has the equation $x^4 4ax + b = 0$?

Turn over

D 110212

10. Verify that the equation
$$x^3 - 7x + 7 = 0$$
 has roots in the interval $\left(\frac{3}{2}, 2\right)$.

11. State True/False : Let α , β , γ are the roots of the equation f(x) = 0, then $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$, ... are the roots of the equation $f\left(\frac{1}{x}\right) = 0$.

2

12. State True/False: If the equation contains only even powers of x and the co-efficients are all of the same sign, the equation has no real root.

Section B

Not more than 30 marks can be earned from this unit. Each question carries 5 marks.

- 13. Prove that 2×2 matrix **P** represents a rotation of \mathbb{R}^2 about the origin if and only if it satisfies the following two conditions:
 - (a) **P** is orthogonal;
 - (b) $\det \mathbf{P} = 1$.
- 14. Determine the affine transformation which maps the points (2, 3), (1, 6) and (3, -1) to the points (1, -2), (2, 1) and (-3, 5), respectively.
- 15. Show that the roots of the equation

$$x^3 + px^2 + qx + r = 0$$

are in arithmetic progression if $2p^3 - 9pq + 27r = 0$.

- 16. If α , β , γ are roots of $x^3 + px^2 + qx + r = 0$, find the values of $\sum \frac{1}{\beta \gamma}$ in terms of co-efficients of the equation.
- 17. Find an upper limit of the positive roots of the equation

$$x^5 - 7x^4 - 100x^3 - 1000x^2 + 10x - 50 = 0.$$

D 110212

- 18. Find the rational roots of the equation $6x^4 7x^3 + 8x^2 7x + 2 = 0$.
- 19. Using Descartes' Rule of signs, show that the equation:

$$x^6 - x^3 + 2x^2 - 3x - 1 = 0$$

has four imaginary roots.

Section C

3

Answer any one question.

Each question carries 10 marks.

- 20. (a) Prove that an affine transformation maps parallel straight lines to parallel straight lines.
 - (b) If α , β and γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$, form, the equation whose roots are $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$.
- 21. (a) Solve the biquadratic equation $x^4 3x^2 + 6x 2 = 0$.
 - (b) Solve $x^3 6x^2 + 3x 2 = 0$ by Cardano's method.

 $(1 \times 10 = 10 \text{ marks})$