D 103062	(Pages : 4)	Name
		Reg. No

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2024

Mathematics

MTS 4B 04—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer Type Question)

All questions can be attended. Each question carries 2 marks. Overall ceiling 25.

- 1. Give an example of a system of linear equation with the following properties:
 - (i) Unique solution
 - (ii) Infinite number of solutions
- 2. Solve the system x + y = 2, x y = 0 by using any method.
- 3. Give an example to show that the matrix multiplication is need not be commutative.
- 4. Find the row reduced echelon form of

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$$

- 5. Let $W = \{(x, y, z) : x + y + z = 0\}$. Show that W is subspace of \mathbb{R}^3 .
- 6. Show that $\{(1,0),(0,1)\}$ spans \mathbb{R}^2 .
- 7. Define Wronskian. Find the Wronskian of $\sin 5x$ and $\cos 5x$.
- 8. Define linearly independent set. Give an example.
- 9. Define row space and column space of a matrix.

Turn over

D 103062

10. Find the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$
.

11. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$, that projects onto the *x*-axis in the *xy*-plane is not one-one.

2

- 12. Find the eigen values of $\begin{bmatrix} 3 & 0 \\ 8 & 1 \end{bmatrix}$.
- 13. Define similar matrices. Show that if A and B are similar the determinant is equal.

14. Let
$$\boldsymbol{u} = \mathbf{U} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $\boldsymbol{v} = \mathbf{V} = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$. Evaluate $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$, where, $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \mathbf{U}, \mathbf{V} \rangle = trace (\mathbf{U}^{\mathrm{T}} \mathbf{V})$.

15. Define orthogonal matrix. Show that
$$\begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$
 is orthogonal.

(Ceiling 25 Marks)

Section B (Paragraph/Problem Type Questions)

All questions can be attended. Each question carries 5 marks. Overall Ceiling 35.

16. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, find, det (A) , A^{-1} , A^{-2} , A^{-3} and A^{-5} .

17. Using row reduction, evaluate the determinant of:

$$\begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$$

- 18. Determine the set $\{6, 3\sin^2 x, 2\cos^2 x\}$ is independent or not.
- 19. Show that the matrices

$$\mathbf{M}_1 = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \, \mathbf{M}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}; \, \mathbf{M}_3 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix}, \, \mathbf{M}_4 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}.$$

Form a basis for the vector space \boldsymbol{M}_{22} of 2 \times 2 matrices.

20. Find a basis for row space of the matrix

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}.$$

- 21. Describe the null space of the matrix $\begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix}$.
- 22. Define inner product. Consider P_2 with the inner product $\langle p, q \rangle = \int_{-1}^{1} p(x) q(x) dx$. Verify that x and x^2 are orthogonal with respective above inner product.
- 23. Let f = f(x) and g = g(x) be two functions on C[a, b]. Show that $\langle f, g \rangle = \int_a^b f(x) f(x) dx$ defines an inner product on C[a, b].

(Ceiling 35 Marks)

Turn over

Section C (Essay Type Question)

Answer any **two** questions. Each question carries 10 marks.

24. (a) For what values of b_1 , b_2 and b_3 the following system of equations are consistent?

$$x_1 + x_2 + 2x_3 = b_1$$

$$x_1 + 0x_2 + x_3 = b_2$$

$$2x_1 + x_2 + 3x_3 = b_3.$$

- (b) Let A and B are symmetric matrices of same size. Then show that the followings.
 - (i) A^T is symmetric
 - (ii) A + B and A B are symmetric
 - (iii) kA is symmetric, where k is any scalar.
- 25. Let $u = \{1, 2, -1\}, v = \{6, 4, 2\}$ in \mathbb{R}^3 .
 - (a) Show that $w = \{9, 2, 7\}$ is in the linear combination of u and v.
 - (b) Show that $w = \{4, -1, 8\}$ is not in the linear combination of u and v.
- 26. Consider the matrix,

$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ -3 & 1 & 5 & 2 \\ -2 & 3 & 9 & 2 \end{bmatrix}$$

- (a) Verify that $rank(A) = rank(A^T)$.
- (b) Verify dimension theorem for the matrix A.
- 27. Find an orthogonal matrix P that diagonalizes:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}.$$

 $(2 \times 10 = 20 \text{ marks})$