FIRST SEMESTER (CUFYUGP) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MAT 1CJ 101—DIFFERENTIAL CALCULUS

(2024 Admission onwards)

Time: Two Hours

Maximum Marks: 70

Section A

All questions can be answered. Each question carries 3 marks. (Ceiling 24 marks)

- 1. Draw the graph of the equation $y^2 = 4x$.
- 2. Write any three properties of absolute value function f(x) = |x|.
- 3. Find $\lim_{x \to +\infty} \left(\frac{1 e^x}{1 + e^x} \right)$.
- 4. Does $\lim_{x\to 1} \frac{1}{1-x} = \lim_{x\to 0^-} \frac{1}{x}$ exist ? Explain.
- 5. At what points are the function $\frac{x}{\sin x}$ continuous?
- 6. Let $f(x) = x^2$ and g(x) = x + 6. Find $(g \circ f)(x)$ and $(g \circ f)'(x)$.
- 7. Find the absolute maximum and minimum values of $f(x) = 4x^2 12x + 10$ on the closed interval [1, 2].
- 8. Find the two *x*-intercepts of the function $f(x) = x^2 5x + 4$ and confirm that f'(c) = 0 at some point *c* between those intercepts.
- 9. Locate the critical points of the function $f(x) = x^3 3x^2$ and identify which critical points are stationary points.
- 10. Determine whether the statement "If the graph of f has a cusp at x = 1, then f cannot have an inflection point at x = 1" is true or false. Explain your answer.

Turn over

D 112341

Section B

All questions can be answered. Each question carries 6 marks. (Ceiling 36 marks)

- 11. Find the center and radius of the circle $x^2 + y^2 + 4x 6y 3 = 0$.
- 12. Determine whether the statement "If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then so does $\lim_{x\to a} [f(x)+g(x)]$ " is true or false. Explain your answer.
- 13. Define h(2) in a way that extends $h(t) = \frac{t^2 + 3t 10}{(t 2)}$ to be continuous at t = 2.
- 14. Find $\frac{dy}{dx}$ if $2y = x^2 + \sin y$.
- 15. Find the absolute extrema of $f(x) = \sqrt{x} + \cos x$ on $\{0, 2\pi\}$.
- 16. Find the interval on which the function $f(x) = ax^2 + bx + c$, $a \ne 0$, is increasing and decreasing. Describe the reasoning bahind your answer.
- 17. Find the asymptotes of the graph of $f(x) = -\frac{8}{x^2 4}$.
- 18. Solve $\lim_{x \to \infty} \frac{2\sqrt{x} + x^{-1}}{3x 4}$.

Section C

Answer any **one** question. The question carries 10 marks.

- 19. (a) Suppose $\lim_{x\to 1} f(x) = 2$ and $\lim_{x\to 1} g(x) = 9$. Find $\lim_{x\to 1} \frac{f(x) x^2 g(x)}{x f(x)}$.
 - (b) Explain the continuity of the function $f(x) = \frac{3x+4}{x^2-4}$.
- 20. (a) Suppose that f(-1) = 3 and f'(x) = 0 for all x. Must f(x) = 3 for all x? Give reasons for your answer.
 - (b) Discuss the concavity and convexity of the curve $y = x^2$.

 $(1 \times 10 = 10 \text{ marks})$