D 10669 (Pages : 4) Name.....

Reg. No.....

FIFTH SEMESTER U.G. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS—UG)

Mathematics

MTS 5B 08—LINEAR PROGRAMMING

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Define canonical minimization linear programming problem.
- 2. Give an example of a bounded polyhedral convex subset in \mathbb{R}^2 .
- 3. State the canonical minimization linear programming problem represented by the following tableau:

$$\begin{array}{c|ccccc}
x & 1 & 2 & 3 \\
y & 4 & 5 & 6 \\
-1 & 7 & 8 & 9 \\
& = t_1 & = t_2 & g
\end{array}$$

- 4. Define unbounded linear programming problem.
- 5. Pivot on 5 in the canonical maximum tableau given below:

$$\begin{array}{c|cccc}
x_1 & x_2 & -1 \\
\hline
1 & 2 & 3 & = -t_1 \\
4 & 5 & 6 & = -t_2 \\
\hline
7 & 8 & 9 & = f
\end{array}$$

- 6. Write the simplex algorithm for maximum tableaus.
- 7. What do you mean by complementary slackness?
- 8. State Duality theorem.

Turn over

D 10669

9. Consider the canonical maximization linear programming problem given below;

Maximize $f(x_1,x_2) = x_1$ subject to

$$x_1 + x_2 \le 1$$

$$x_1 - x_2 \ge 1$$

$$x_2 - 2x_1 \ge 1$$

$$x_1, x_2 \ge 0$$

state the dual canonical minimization of the linear programming problem.

- 10. Distinguish between balanced and unbalanced transportation problem.
- 11. Using VAM to obtain a basic feasible solution of the transportation problem given below:

[7] 14	5	4
6	3	9
3	2	7
4	5	5

12. Explain the minimum entry method for obtaining initial basic feasible solution in transportation problem.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

13. Solve the following linear programming problem by geometrical method.

Maximize f(x,y) = -2y - x subject to

$$2x - y \ge -1$$

$$3y - x \le 8$$

$$x, y \ge 0$$
.

14. Solve the following canonical linear programming problem using simplex algorithm:

x_1	x_2	-1	
-1	1	1	$= -t_1$
1	-1	3	$=-t_2$
1	2	0	= <i>f</i>

D 10669

15. Solve the canonical linear programming problem using simplex algorithm:

3

16. Solve the non-canonical linear programming problem given below

Maximize f(x, y, z) = 2x + y - 2z subject to

$$x + y + z \le 1$$
$$y + 4z = 2$$
$$x, y, z \ge 0.$$

- 17. Write the dual simplex algorithm for minimum tableaus.
- 18. Solve the transportation problem given below:

$$\begin{array}{c|ccccc} & M_1 & M_2 & M_3 \\ W_1 & 2 & 1 & 2 \\ W_2 & 9 & 4 & 7 \\ W_3 & 1 & 2 & 9 \\ \hline & 40 & 50 & 20 \\ \end{array} \hspace{0.25cm} \begin{array}{c|cccccc} & 50 & \\ & 70 & \\ & 20 & \\ \end{array}$$

19. Apply Northwest-corner method to obtain the initial basic feasible solution of the transportation problem given below:

7	2	4	10
10	5	9	20
7	3	5	30
20	10	30	

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any **one** question. The question carries 11 marks.

20. Solve the canonical linear programming problem given below using the simplex algorithm.

\boldsymbol{x}	У	\boldsymbol{z}	- 1	
1	2	1	4	$=-t_1$
2	1	5	5	$=-t_{2}$
3	2	0	6	$=-t_{3}$
1	2	3	0	= <i>f</i>

Turn over

D 10669

21. Write the Hungarian algorithm. Using this algorithm solve the following assignment problem :

4

2	3	2	4
5	8	4	3
5	9	5	2
7	6	7	4

 $(1 \times 11 = 11 \text{ marks})$