FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 08—LINEAR PROGRAMMING

(2020 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A ((Short Answer Type)

All questions can be answered. Each question carries 2 marks. Ceiling 20 Marks.

1. Draw the set of points (x, y) satisfying the constraints

$$2x + y \le 8$$
, $x + 2y \le 10$, $x \ge 0$, $y \ge 0$.

- 2. Write the canonical maximization linear programming problem.
- 3. Define a convex subset of \mathbb{R}^2 . Also draw a convex set and a non-convex set in \mathbb{R}^2 .
- 4. Let S be a convex set in \mathbb{R}^2 . Define an extreme point of S.
- 5. Consider the canonical maximum tableau below:

x	у	-1	
1	2	3	$=-t_{1}$
4	5	6	$=-t_{2}$
7	8	9	= f

State the canonical maximization linear programming problem represented by the tableau above.

- 6. Write the canonical slack maximization linear programming problem.
- 7. State Von-Neumann Minimax Theorem.
- 8. What is complementary slackness of a dual canonical linear programming problem?

Turn over

- 9. What is the basic feasible solution of a balanced transportation problem?
- 10. Define hyper plane and closed half-space of \mathbb{R}^n .
- 11. What is the mixed strategy of a matrix game?
- 12. What is the general balanced assignment problem?

Section B (Paragraph/Problem Type)

All questions can be answered. Each question carries 5 marks. Ceiling 30 marks.

13. Solve graphically: Maximize f(x, y) = 30x + 50y subject to

$$2x + y \le 8$$
, $x + 2y \le 10$, $x \ge 0$, $y \ge 0$.

- 14. State Duality Theorem.
- 15. Solve the transportation problem given below:

	7	2	4	10
	10	5	9	20
	7	3	5	30
٨	20	10	30	

16. Solve the assignment problem given below:

38	21	34
41	14	36
28	20	25

- 17. Write the simplex algorithm for Maximum Tableau's.
- 18. Find the von Neumann value and the optimal strategy for each player in the matrix games below:

19. What is a two-person zero-sum matrix game?

3 D 110211

Section C (Essay Type)

Answer any **one** of the following questions.

The question carries 10 marks.

20. Solve the canonical linear programming problem using simplex algorithm to the minimum tableau given below:

x_1	20	25	300
x_2	40	20	500
-1	1000	800	0
	$= t_1$	$= t_2$	= <i>g</i>

21. Solve the following maximization problem:

Maximize
$$f(x, y) = x + 3y$$
 subject to $x + 2y \le 10$, $3x + y \le 15$, $x \ge 0$, y is unconstrained.

 $(1 \times 10 = 10 \text{ marks})$