D 30568	(Pages : 3)	Name
		Reg No.

FIFTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MTS 5B 05—ABSTRACT ALGEBRA

(2020 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Ceiling is 25.

- 1. Write addition and multiplication tables for \mathbb{Z}_4 .
- 2. Check whether the relation on defined by $a \sim b$ if $n \mid (a b)$, where n is a positive integer is an equivalence relation.
- 3. Consider the following permutations in S_7 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}.$$

Compute or and to.

- 4. Show that cancellation property holds in a group G.
- 5. Find all cyclic subgroups of the group \mathbb{Z}_6 .
- 6. Find the order of the element $\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$ in $\operatorname{GL}_2(\mathbb{R})$.
- 7. Give addition table for $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 8. Show that composite of two group isomorphisms is a group isomorphism.
- 9. Give the subgroup diagrams of \mathbb{Z}_{24} .

Turn over

2 D 30568

- 10. Find the order of the permutation (1, 2, 5) (2, 3, 4) (5, 6).
- 11. Let $G = \mathbb{Z}_{12}$, and let H be the subgroup $4\mathbb{Z}_{12}$. Find all cosets of H.
- 12. Define normal subgroup of a group G. Give an example.
- 13. Compute the factor group $\frac{\mathbb{Z}_6 \times \mathbb{Z}_4}{\langle (2,2) \rangle}$.
- 14. Define commutative ring. Give an example.
- 15. Define Integral Domain. Give an example.

Section B

Answer any number of questions.

Each question carries 5 marks. Ceiling is 35.

- 16. If (a, n) = 1, then show that $a^{\phi(n)} \equiv 1 \pmod{n}$.
- 17. Let G be a group and let H be a subset of G. Then show that H is a subgroup of G if and only if H is non-empty and $ab^{-1} \in H$ for all $a, b \in H$.
- 18. Let G be a finite cyclic group with n elements. Show that $G \cong \mathbb{Z}_n$.
- 19. Let $\phi: G_1 \to G_2$ be a group homomorphism with $\operatorname{Ker} \phi = \{x \in G_1 : \phi(x) = e\}$. Show that ϕ is one to one if and only if $\operatorname{Ker} \phi = \{e\}$.
- 20. Let G be a group, and let $a, b \in G$ be elements such that ab = ba. If the orders of a and b are relatively prime, then prove that 0(ab) = 0(a)0(b).
- 21. Show that any subring of a field is an integral domain.
- 22. Let G be an abelian group, and let n be any positive integer. Show that the function $\phi: G_1 \to G_2$ defined by $\phi(x) = x^n$ is a homomorphism.
- 23. State and prove Fundamental Homomorphism Theorem.

3 **D 30568**

Section C

Answer any **two** questions.

Each question carries 10 marks.

Maximum 20 marks.

- 24. Show that the inverse of a group isomorphism is a group isomorphism.
- 25. Show that every sub-group of a cyclic group is cyclic.
- 26. Let H be a sub-group of the finite group G. Show that the order of H is a divisor of order of G.
- 27. State and prove First Isomorphism Theorem.