C 40188	(Pages : 3)	Name
		Reg. No

SXTH SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, MARCH 2023

Mathematics

MAT 6B 12—NUMBER THEORY AND LINEAR ALGEBRA

(2017–2018 Admissions)

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all the twelve questions. Each question 1 mark.

- 1. Define greatest common divisor of a and b.
- 2. State Euclid's lemma.
- 3. Examine whether the Diophantine equation 6x + 51y = 22 has an integer solution.
- 4. If *p* is a prime and $p \mid ab$, show that $p \mid a$ or $p \mid b$.
- 5. Define Euclidean number. List the first five Euclidean numbers.
- 6. State Wilson's Theorem.
- 7. Find $\phi(360)$.
- 8. Define Vector Space.
- 9. Give an example to show that union of two subspaces need not be subspace.
- 10. Check whether the map $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by f(x,y,z) = (2x,y-2,4y) is linear. Justify your claim.
- 11. State the Dimension theorem.
- 12. When we say that a linear map is an isomorphism. Give an example for an isomorphism?

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any **ten** out of fourteen questions. Each question carries 4 marks.

- 13. Prove that $3a^2 1$ is never a perfect square.
- 14. If gcd(a,b) = d, prove that $gcd\left(\frac{a}{d},\frac{b}{d}\right) = 1$.

Turn over

2 C 40188

- 15. Use the Euclidean Algorithm to find gcd(12378,3054).
- 16. Prove that every integer n > 1 can be expressed as a product of primes.
- 17. Prove that the number $\sqrt{3}$ is irrational.
- 18. Using Sieve of Eratosthenes find all primes not exceeding 100.
- 19. Show that 41 divides 2^{20} -1.
- 20. Let $N = a_m 10^m + a_{m-1} 10^{m-1} + \ldots + a_1 10 + a_0$ be the decimal expansion of the positive integer $N, 0 \le a_k < 10$, and let $S = a_0 + a_1 + \ldots + a_m$. Prove that $9 \mid N$ if and only if $9 \mid S$.
- 21. Find the remainder when 15! is divided by 17.
- 22. Prove that every line through the origin is a subspace of \mathbb{R}^2 .
- 23. If the vector space V has a finite basis B then show that every basis of V is finite and has the same number of elements as B.
- 24. Let $f: V \to W$ be linear. Prove that if X is subspace of V then $f^{\to}(X)$ is a subspace of W.
- 25. Find Im f and Ker f when $f: \mathbb{R}^3 \to \mathbb{R}^3$ is given by f(a,b,c) = (a+b,b+c,a+c).
- 26. Let $f: V \to W$ be a linear map. Prove that f is injective if and only if $ker f = \{0\}$.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** out of nine questions. Each question carries 7 marks.

- 27. If a and b are given integers, not both zero, prove that the set $T = \{ax + by : x, y \text{ are integers}\}$ is precisely the set of all multiples of $d = \gcd(a,b)$.
- 28. Prove that gcd(a,b) lcm(a,b) = ab, where a and b are positive integers.
- 29. Find the complete solution of the linear Diophantine equation 172x + 20y = 1000. Also find solutions in positive integers if they exist.
- 30. Using Chinese Remainder Theorem, solve the system of congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$.

3 C 40188

- 31. Let *p* be a prime and suppose that $p \mid a$. Prove that $a^{p-1} \equiv 1 \pmod{p}$.
- 32. (a) Prove that $\langle S \rangle = \text{span } S$.

(4 marks)

- (b) Show that $\{(1,1,1), (1,2,3), (2,-1,1), (2,-1,1)\}$ is a basis of \mathbb{R}^3 . (3 marks)
- 33. If the vector space V has a finite basis B then show that every basis of V is finite and has the same number of elements as B.
- 34. Let V and W be vector spaces over a field F. If $\{v_1, v_2, \dots, v_n\}$ is a basis of V and w_1, w_2, \dots, w_n are elements of W then show that there is a unique linear mapping $f: V \to W$ such that $f(v_i) = w_i$ for $i = 1, 2, \dots, n$.
- 35. If $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear map such that f(1,1,1) = (1,1,1), f(1,2,3) = (-1,-2,-3), f(1,1,2) = (2,2,4), then find f(x,y,z) for all $(x,y,z) \in \mathbb{R}^3$.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** out of three questions. Each question carries 13 marks.

36. (a) Prove that the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime, has a solution if and only if $p \equiv 1 \pmod{4}$.

(10 marks)

(b) Prove that If n > 1, then the sum of the positive integers less than n and relatively prime to n is $\frac{1}{2}n\phi(n)$.

(3 marks)

37. (a) State and Prove Division Algorithm.

(10 marks)

(b) Prove that square of any integer is either 3k or 3k + 1.

- (3 marks)
- 38. Show that the linear mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by f(x,y,z) = (x+z,x+y+2z,2x+y+3z) is neither surjective nor injective.

 $(3 \times 13 = 39 \text{ marks})$