D 111973	(Pages : 2)	Name
		Reg No

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTS 3C 03—MATHEMATICS—3

(2019—2023 Admissions)

Time: Two Hours

Maximum Marks: 60

Part A

All questions can be answered. Each question carries 2 marks. (Ceiling 20 marks)

- 1. If $r(t) = \langle f(t), g(t), h(t) \rangle$, where f, g and h are differentiable, then prove that $r'(t) = \langle f'(t), g'(t), h'(t) \rangle$.
- 2. The position of a moving particle is given by $r(t) = t^2i + tj + \frac{5}{2}tk$. Find v(2) and a(2).
- 3. Describe the level surfaces of the function $f(x, y) = y^2 x$.
- 4. If $F = (x^2y^3 z^4)i + 4x^5y^2zj + y^4z^6k$, find curl F.
- 5. Evaluate $\int xy^2 ds$ on the quarter-circle C defined by $x = 4 \cos t$, $y = 4 \sin t$, $0 \le t \le \frac{\pi}{2}$.
- 6. Find $\int_{\mathcal{C}} y dx + x dy$ on the curve $y = x^3$ between (0, 0) and between (1, 1).
- 7. Convert $\left(8, \frac{\pi}{3}, 7\right)$ in cylindrical co-ordinates to rectangular co-ordinates.
- 8. Find the values of ln(-2).
- 9. Prove that $\cosh^2 z + \sinh^2 z = 1$.
- 10. Evaluate $\int \overline{z}dz$, where C is given by x = 3t, $y = t^2$, $-1 \le t \le 4$.
- 11. Evaluate $\oint_{\mathcal{C}} e^z dz$, where \mathcal{C} is the circle |z| = 2.
- 12. Derive Cauchys inequality.

Turn over

D 111973

Part B

All questions can be answered. Each question carries 5 marks. (Ceiling 30 marks)

- 13. Find the directional derivative $f(x,y) = 2x^2y^3 6xy$ at (1, 1) in the direction of a unit vector whose angle with the positive x-axis is $\frac{\pi}{6}$.
- 14. Find an equation of the tangent plane to the graph of $x^2 4y^2 + z^2 = 16$ at (2, 1, 4).
- 15. Evaluate the double integral $\iint_{\mathbb{R}} e^{x+3y} dA$ over the region bounded by the graphs of y=1, y=2, y=x and y=-x+5.
- 16. Evaluate $\oint_C (x^5 + 3y) dx + (2x e^{y^3}) dy$, where C is the circle $(x 1)^2 + (y 5)^2 = 4$.
- 17. Find the volume of the solid in the first Octant bounded by the graphs of $z = 1 = y^2$, y = 2x and x = 3.
- 18. Solve the equation $\cos z = 10$.
- 19. Find an upper bound for the absolute value of $\oint_C \frac{e^z}{z+1} dz$, where C is the circle |z| = 4.

Section C

Answer any **one** questions. The question carries 10 marks.

- 20. Let S be the part of the cylinder $z = 1 x^2$ for $0 \le x \le 1, -2 \le y \le 2$. Verify Stoke theorem for the vector field $F = xy \ i + yz \ j + xz \ k$. Assume S is oriented upward.
- 21. Find the moment of inertia about the z-axis of the homogeneous solid bounded between the spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$, a < b.

 $(1 \times 10 = 10 \text{ marks})$