D 31818	(Pages : 3)	Name
		Reg. No

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2022

Mathematics

MTS 3B 03—CALCULUS OF SINGLE VARIABLE - 2

(2019 Admission Onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions from this section.

Each question carries 2 marks.

Maximum marks : 25.

- 1. Find the derivative of $\log \sqrt{x^2 + 1}$.
- 2. Find the derivative of $\tan^{-1} \sqrt{2x+3}$.
- 3. Evaluate $\lim_{x \to \infty} \frac{\log x}{x}$.
- 4. Let $f(x) = e^x + x$. (a) find the derivative of f; (b) find an equation to the tangent line to the graph of f(x) at x = 0.
- 5. Evaluate $\int_{-1}^{\infty} e^{-x} dx$.
- 6. Determine whether $\left\{\frac{n}{n+1}\right\}$ converges or diverges.
- 7. Determine whether the series $\sum_{n=1}^{\infty} 3\left(\frac{-1}{2}\right)^{n-1}$ converges or diverges. If it converges, find the sum.
- 8. What is an alternating series? Give an example.
- 9. Define a power series. Give an example.

Turn over

2 **D** 31818

- 10. Find the Maclaurin's series of $f(x) = e^x$ and determine its radius of convergence.
- 11. Find $\frac{d^2y}{dx^2}$ if $x = t^2 u$ and $y = t^3 3t$.
- 12. Find the parametric equation for a line L passing through the points P(-3,3,-2) and G(2,-1,4).
- 13. Find an equation in rectangular co-ordinates for the surface with the given cylindrical equation $r^2 \cos 2\theta z^2 = 4$.
- 14. Find the point of tangency and unit tangent vector at the point on the curve :

$$r(t) = (t^2 + 1)i + e^{-t}j - \sin 2tk$$
 at $t = 0$.

15. Find the length of the arc of the helix given by $r(t) = 2\cos ti + 2\sin tj + tk, 0 \le t \le 2\pi$.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum marks : 35.

- 16. Find the derivative of $y = \frac{(2x-1)^3}{\sqrt{3x+1}}$.
- 17. Find $\int \cosh^2(3x) \sinh(3x) dx$.
- 18. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$.
- 19. (a) Use integral test to determine whether the series $\sum_{n=1}^{\infty} \frac{\log n}{n}$ converges or diverges.
 - (b) Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2}$ converges or diverges.

3 D 31818

- 20. (a) Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$
 - (b) Find a power series representation of log (1-x) on (-1, 1).
- 21. Sketch the curve described by the parametric equations $x = t^2 4$, y = 2t, $-1 \le t \le 2$.
- 22. Find an equation of the plane containing the points P(3,-1,1), Q(1,4,2) and R(0,1,4).
- 23. Find the curvature of the twisted cubic described by the vector function $r(t) = ti + \frac{1}{2}t^2j + \frac{1}{3}t^3k$.

Section C

Answer any number of questions from this section.

Each question carries 10 marks.

Maximum marks: 20.

- 24. (a) Evaluate $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$.
 - (b) A power line is suspended between two towers. The shape of the cable is a catenary with equation $y = 80 \cosh \frac{x}{80}$, $-100 \le x \le 100$, where x is measured in feet. Find the length of the cable.
- 25. (a) Show that $\int_{0}^{\infty} e^{-x^2} dx$ is convergent.
 - (b) Find $\lim_{n\to\infty} \frac{n!}{n^n}$.
- 26. (a) Find the Taylor series for $f(x) = \sin x$ at $x = \pi/6$.
 - (b) Find the area of the region enclosed by the cardioid $r = 1 + \cos \theta$.
- 27. (a) Identify and sketch the surface $12x^2 3y^2 + 4z^2 + 12 = 0$.
 - (b) A particle moves along a curve described by the vector function $r(t) = ti + t^2j + t^3k$. Find the tangential scalar and normal scalar components of acceleration of the particle at time t.