FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 07—NUMERICAL ANALYSIS

(2020 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Ceiling is 20.

- 1. Find the polynomial of degree one passing through the points (1, 2) and (2, -1).
- 2. What you mean by Interpolation.
- 3. Write The Newton's Forward difference formula.
- 4. State Fixed Point Theorem.
- 5. Show that the equation $f(x) = x^5 x 5$ has a root between 1 and 2.
- 6. State Weierstrass approximation theorem.
- 7. Find the zeroth divided difference of the function $f(x) = x^2 1$ at $x_1 = 2$.
- 8. Write Three Point Mid Point Formula
- 9. Write the Trapezoidal rule for $\int_0^2 (x^2 + 1) dx$.
- 10. Write Newton's iteration formula for computing $\sqrt[3]{7}$
- 11. Does the set $\{(t, y), -1 < t < 1, -1 < y < 1\}$ is a convex set? Justify your answer.
- 12. State Lipschitz condition.

Turn over

D 110210

Section B

2

Answer any number of questions.

Each question carries 5 marks.

Ceiling is 30.

- 13. Use Lagrange interpolating polynomial of degree three to approximate f(10) if f(5) = 12, f(6) = 13, f(9) = 14, f(11) = 16.
- 14. The following table lists the values of f at various points.

x	f(x)
20	0.3420
23	0.3907
26	0.4384
29	0.4848

Use the Newton forward difference formula to construct interpolating polynomial for this data. Also find f(21).

- 15. Find the real positive root of $f(x) = x \cos x 1 = 0$ by Newton's method.
- 16. Consider the following table of data:

x	f(x)
50	3.6840
51	3.7084
52	3.7325
53	3.7563
54	3.7798
55	3.8030
56	3.8259

Use forward difference formula to approximate the value of f'(50).

D 110210

- 17. Evaluate $\int_{-3}^{3} x^4 dx$ by using (i) Trapezoidal rule; and (ii) Simpson's rule.
- 18. Apply Taylor's method of order two to approximate the solution for the initial value problem $y' = e^{t-y}$, $0 \le t \le 1$, y(0) = 1, h = 0.5.

3

19. Use Euler's method to approximate the solution for $y' = y + e^t$, y(0) = 0, h = 0.2.

Section C

Answer any **one** question.

The question carries 10 marks.

- 20. Find the positive root of $x^4 x^3 2x^2 6x 4 = 0$ by Bisection method within 10^{-4} accuracy.
- 21. Use the Runge Kutta method of order four with h=0.2, N=10, $t_i=0.2i$ to obtain approximations to the solutions of the initial value problem $y'=y-t^2+1$, $0 \le t \le 2$, $y\left(0\right)=0.5$.

 $(1 \times 10 = 10 \text{ marks})$