SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2023

(CBCSS—UG)

Mathematics

MTS 6B 12—CALCULUS OF MULTI VARIABLE

(2019 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Questions 1–15, Answer any number of questions.

Each question carries 2 marks.

Maximum marks 25.

- 1. Find the domain and range of the function $f(x, y) = \sqrt{4 x^2 y^2}$.
- 2. Show that $\lim_{(x, y)\to(0, 0)} \frac{xy^2}{x^2+y^4}$ does not exist.
- 3. Find f_x and f_y if $f(x, y) = y^x$.
- 4. Find the Directional Derivative of $f(x,y) = 4 x^2 \frac{y^2}{4}$ at (1,2) in the direction of $\vec{u} = \cos \frac{\pi}{3} \hat{i} + \sin \frac{\pi}{3} \hat{j}$.
- 5. Find the gradient of $f(x, y) = y \ln x + xy^2$ at the point (1, 2).
- 6. Find the relative extrema of $f(x, y) = 1 (x^2 + y^2)^{\frac{1}{3}}$.

Turn over

C 40605

7. Evaluate $\iint_{\mathbb{R}} 2x - y \, dA$ where \mathbb{R} is the region bounded by the parabola $x = y^2$ and the straight line x - y = 2.

2

- 8. Find the surface area of the portion of the plane z = 2 x y that lies above the circle $x^2 + y^2 \le 1$ in the first quadrant.
- 9. Find a transformation T from a region S to the region R bounded by the lines x-2y=0, x-2y=-4, x+y=4 and x+y=1 such that S is a rectangular region.
- 10. Sketch the region of integration and reverse the order of integration in $\int_{1}^{e} \int_{0}^{\ln x} f(x, y) dy dx$.
- 11. Check whether the vector field $\vec{F}(x, y, z) = 2xy \hat{i} + (x^2 + z^2) \hat{j} + 2yz \hat{k}$ is irrotational.
- 12. Find div (curl \vec{F}) if $\vec{F}(x, y, z) = xyz \hat{i} + y\hat{j} + z\hat{k}$.
- 13. Use Green's theorem to evaluate $\oint_C (x^2y + x^3) dx + 2xy dy$ where C if the boundary of the region bounded by y = x and $y = x^2$.
- 14. State Gauss Divergence theorem.
- 15. Evaluate the surface integral $\iint_S x + z \, dS$ where S is the first octant portion of the cylinder $y^2 + z^2 = 9$ between x = 0 and x = 4.

3 C 40605

Section B

Questions 16–23, Answer any number of questions.

Each question carries 5 marks.

Maximum marks 35.

- 16. Show that the function $z = \sqrt{x^2 + y^2} \tan^{-1} \frac{y}{x}$ satisfies $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.
- 17. Let $w = x^2y xy^3$ where $x = \cos t$ and $y = e^t$. Find $\frac{dw}{dt}$ at t = 0.
- 18. Find the points on the sphere $x^2 + y^2 + z^2 = 14$ at which the tangent plane is parallel to the plane x + 2y + 3z = 12.
- 19. Find the relative extrema of $f(x, y) = 2x^2 + y^2 + 8x 6y + 20$.
- 20. Find the volume of the solid bounded by the cylinder $y^2 + z^2 = 9$ and the planes x = 0, y = 0, z = 0 and 2x + y = 2.
- 21. Evaluate $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy$ by changing the order of integration.
- 22. Find an equation of the tangent plane to the paraboloid

$$\vec{r}(u,v) = u\hat{i} + v\hat{j} + (u^2 + v^2)\hat{k}$$
 at the point $(1,2,5)$.

23. Find the surface integral $\iint_S y^2 + 2yz \, dS$ where S is the first octant portion of the plane 2x + y + 2z = 6.

Turn over

4 C 40605

Section C

Questions 24–27, Answer any **two** questions. Each question carries 10 marks.

- 24. (a) Find the second order partial derivatives of $w = \cos(2u v) + \sin(2u + v)$.
 - (b) Let $z = f(x, y) = 2x^2 xy$. Find Δz and use the result to find the change in z if (x, y) changes from (1, 1) to (0.98, 1.03).
- 25. Find the absolute maximum and absolute minimum values of the function $f(x, y) = 2x^2 + y^2 4x 2y + 3$ on the rectangle $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$
- 26. Evaluate $\iiint_T \sqrt{x^2 + z^2} \ dv$ where T is the region bounded by the cylinder $x^2 + z^2 = 1$ and the planes y + z = 2 and y = 0.
- 27. verify Divergence Theorem for $\vec{F}(x, y, z) = 2z\hat{i} + x\hat{j} + y^2\hat{k}$ and T is the solid region bounded between the paraboloid $z = 4 x^2 y^2$ and the xy plane.

 $(2 \times 10 = 20 \text{ marks})$