C 41231 (Pages : 4) Name.......

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

Mathematics

MTS 4B 04—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer type Question)

Each question carries 2 marks.
All questions can be attended.
Overall ceiling 25.

- 1. Give an example of a system of linear equation with the following properties:
 - (i) Unique solution; and
 - (ii) No solution.
- 2. For any 2×2 matrices, A and B, prove that

$$trace(A + B) = trace(A) + trace(B)$$
.

- 3. Define all subspaces of the vector space \mathbb{R}^3 over \mathbb{R} .
- 4. Define linear combination of vectors in a vector space. Write (2,3) as the linear combination of (1,0) and (0,1).
- 5. Define basis of a vector space. Write a basis of P_n , where P_n is the polynomials of degree less than or equal to n.
- 6. Consider the basis $B = \{u_1, u_2\}$ and $B' = \{u_1', u_2'\}$ of \mathbb{R}^2 , where $u_1 = (1, 0)$, $u_2 = (0, 1)$, $u_1' = (1, 1)$ and $u_2' = (2, 1)$. Find the transformation matrix from $B' \to B$.
- 7. Let $W = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$. Find the dimension of W.

Turn over

C 41231

- 8. Give an example of an infinite dimensional vector space.
- 9. Define rank and nullity of a matrix.
- 10. Find the image of x = (1, 1) under the rotation of $\frac{\pi}{6}$, about the origin.
- 11. Define eigen values and eigen vectors of a matrix.
- 12. Find the egien values of $\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 2/3 & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$.
- 13. If λ is the eigen values of a matrix A, show that λ^n is the eigen values of A^{n} .
- 14. Show that (1,1) and (1,-1) are orthogonal vectors with respective the Euclidean inner product.

2

15. Let W be the subspace spanned by the orhonornal vector $v_1 = (0, 1, 0)$. Find the orthogonal projection of u = (1, 1, 1) on W.

(Ceiling 25 marks)

Section B (Paragraph/Problem Type Questions)

Each question carries 5 marks.

All questions can be attended.

Overall Ceiling 35.

16. Solve the following linear system by Gauss-Elimination method,

$$x_1 + x_2 + 2x_3 = 8$$

 $-x_1 - 2x_2 + 3x_3 = 1$
 $3x_1 - 7x_2 + 4x_3 = 10$.

17. Prove that, if A and B are invertible matrices of same size, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

C 41231

- 18. Show that the set $\{(1,1,2),(1,0,1),(2,1,3)\}$ spans \mathbb{R}^3 .
- 19. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equations

$$w_1 = 2x_1 + x_2 w_2 = 3x_1 + 4x_2$$

is one-one, and find $T^{-1}(w_1, w_2)$.

20. Let T be the operator which is the reflection about the xz plane in \mathbb{R}^3 . Find the matrix of T with respective the standard basis.

3

21. Find the rank and nullity of the matrix

$$\begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}.$$

22. Find the bases of the eigen spaces of the matrix

$$\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$

23. Show that a square matrix A is invertible if and only if 0 is not and eigen value of A.

(Ceiling 35 marks)

Turn over

Section C (Essay Type Question)

Answer any **two** questions. Each question carries 10 marks.

24. (a) Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.

- (b) Define the followings with examples:
 - (i) Diagonal matrices;
 - (ii) Lower triangular matrices;
 - (iii) Upper triangular matrices;
 - (iv) Symmetric matrices; and
 - (v) Singular matrices.

25. Let
$$v_1 = \{1, 2, 1\}, v_2 = \{2, 9, 0\}$$
 and $v_3 = \{3, 3, 4\}.$

- (a) Show that $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .
- (b) Find the co-ordinate vector of $v=\left(5,-1,9\right)$ relative to the basis $\left\{v_1,v_2,v_3\right\}$.
- 26. Consider the following linear system:

$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}.$$

- (a) Show that the above system is consistent.
- (b) Solve the above system of linear equations.
- 27. (a) Define similar matrices.
 - (b) Show that the following matrix is not diagonazible:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}.$$

 $(2 \times 10 = 20 \text{ marks})$